Workflow, Defect
Tracking and Emaill

CVS SUITE AND CM SUITE 2009 Build 3701 February 2010

Change
Manager

@ﬁ&ﬁ
=2 @ -

CVSNT

Workspace HP'E"I::-E' Defect Audit
Manager Manager Tracking
Optimized for
Microsoft . March Hare Software Ltd
P Visual Studio

CVS SUITE AND CM SUITE 2009 Build 3701 February 2010 Legal Notices

Legal Notices

There are various product or company names used herein that are the trademarks,
service marks, or trade names of their respective owners, and March Hare Software
Limited makes no claim of ownership to, nor intends to imply an endorsement of, such
products or companies by their usage.

This document and all information contained herein are the property of March Hare
Software Limited, and may not be reproduced, disclosed, revealed, or used in any way
without prior written consent of March Hare Software Limited.

This document and the information contained herein are subject to confidentiality
agreement, violation of which will subject the violator to all remedies and penalties
provided by the law.

LIMITED WARRANTY.

TO THE MAXIMUM EXTENT PERMITTED BY APPLICABLE LAW, March Hare Software
Limited AND ITS SUPPLIERS DISCLAIM ALL WARRANTIES AND CONDITIONS, EITHER
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, IMPLIED WARRANTIES OR
CONDITIONS OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, TITLE
AND NON-INFRINGEMENT, WITH REGARD TO THIS DOCUMENT, AND ANY ADVICE
OR RECOMMENDATION CONTAINED IN THIS DOCUMENT.

NO OTHER WARRANTIES.

TO THE MAXIMUM EXTENT PERMITTED BY APPLICABLE LAW, IN NO EVENT SHALL
March Hare Software Limited OR ITS SUPPLIERS BE LIABLE FOR ANY SPECIAL,
INCIDENTAL, INDIRECT, OR CONSEQUENTIAL DAMAGES WHATSOEVER
(INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS OF BUSINESS PROFITS,
BUSINESS INTERRUPTION, LOSS OF BUSINESS INFORMATION, OR ANY OTHER
PECUNIARY LOSS) ARISING OUT OF THE USE OF OR INABILITY TO USE THE
FOLLOWING DOCUMENTATION INCLUDING ANY RECOMMENDATION OR ADVICE
THERIN, EVEN IF March Hare Software Limtied HAS BEEN ADVISED OF THE
POSSIBILITY OF SUCH DAMAGES. IN ANY CASE, March Hare Software Limited’s
ENTIRE LIABILITY UNDER ANY PROVISION OF THIS DOCUMENT INCLUDING ANY
RECOMMENDATION OR ADVICE THERIN SHALL BE LIMITED TO THE GREATER OF
THE AMOUNT ACTUALLY PAID BY YOU FOR THE DOCUMENT OR £5.00; PROVIDED.

© Copyright 2004 - 2010 March Hare Software Ltd

march-hare.com
sales@march-hare.com

Workflow, Defect Tracking and Email © Copyright 2004 - 2010 March Hare Software Ltd

Page a

CVS SUITE AND CM SUITE 2009 Build 3701 February 2010 Legal Notices

Workflow, Defect Tracking and Email © Copyright 2004 - 2010 March Hare Software Ltd Page b

CVS SUITE AND CM SUITE 2009 Build 3701 February 2010 Table of Contents

Table of Contents

LEGAL NOTICESottt ettt ettt et e e et e s bt e e sb e s s s b e e e b e s e b essabessbessabessebessabessbassabesssbaessbessbessabesans A
TABLE OF CONTENTS ..ottt ettt sttt sttt e st e s st e st e e s b e s s at e e sb b e s sbeessbbeesbeeesbbesabeeesbbeesbeessbbessbenesreas 3
A I I I L] 22T 6
(0] (o1 (o] Y o] n] = TSRO 7
WHAT ARE BRANCHES, MAGIC BRANCHES AND VENDOR BRANCHES......ccccciiiiiiiiiiieiciiiiiiriiee e seiiaree e ssananns 8
When are Branches, Magic Branches and Vendor Branches USedccccovvvireiiiieicne s sese e 8
What are the benefits to using Branches, Magic Branches and Vendor Branches...........ccccccocvvvvvieieennnne. 9
Technical limitations on Branches — no deleting or reNamingccocvoovvvvirieeieiesese e 9
What is different between a Branch and a Magic Branch............cccccevevieiininiincisicsesc s 10
Introduction to CVS Meta Data and DEIAScocvviieiiiieccec ettt 10
PROMOTION MODEL VERSUS BRANCHESuttiiiiieiiiiitiiiiiee e e s ittt e e e e s s stbbataessesssasbbsbasesesssasstbesssesssassstbasesasssains 11
Highly concurrent / Highly available vs. Structure and Controlcccoeoiiiiiininsneescecseees 11

A Branching Intensive Development MOel 11

A promotion intensive “SECUe™ MOUEL..........ooi i bbb 12

Y 1= o Y (0] o= O RRRTRTNE 12
Mixing up the developmeNnt MOGEISceiiiiieec et be e sr e 12
PATCH MANAGEMENT — GETTING FIXES TO CUSTOMERS........cictttttiteieiiiiitirrieeeessiiisssssessesssasssssesssessssssssssssesssnns 12
1] (o1 = Vot T 12
e 1 (0] 1R 13
FILE AND DIRECTORY ARCHITECTUREcciittttttteeiiiiittreteeeessiiitssseessesssssssssessesssssssssssssssssssisssssseesssssinssssseseessn 13
LT = IV o1 SRS 14
FHIE INAIMING ..t b b bbb bbb bbbt bbbt bbbttt b bbbt 14
Include Files and COMMON FUIESeiiiiieiie ettt e e e sttt e st e e e st e e e seraeeessabeeessarbeeesanes 14
Size and contents and the relationship to Project aCtiVitycccocviriininiie e 15
NOTIFICATION OF WHAT IS COMMITTED / ADDED ...vviiiitviieeitiieeseteeeessiteeessittesssssassesssasessssbbassssssssssssenssssssnsessses 15
WHAT OTHER CHOICES DO YOU NEED TO MAKE ABOUT CM . ..uiiiiiiiiiiiiiiii ettt ibbnne e 15
MANAGEMENT ODJECTIVESccueeeeee ettt e b bbb e bt e st e s e beseesbesbeebe et e e neeneenneeas 15
COMPANY CUIUIE ...ttt ettt et e e se et e e et e besbe s beabeebeeseessesbeseesbesbe st e steaneeneeseenreses 16
Reserved / Unreserved — Centralised / De-CentraliSEdcooeiiiiiiiiiiiie ettt saae e 16
CommUNICALION VEISUS INSUIALIONveiiiiiiieiei ittt ettt st sb e e ebe e sb s s be s s sb e s sabe s s bessnbessbesenbee s 17

R0 oI A @ o< PSS 18
AN = I I o = N O I [0 2 RS TPR TR 19
INSTALLING SERVER INTEGRATIONuuttittieeiieittttettteessaisstettsesssaisstssssesssesisssssssessssissssesssessssissssssssesessissssssseses 20
INTEGRATION WITH EMALL .ovtviiiiiei ittt ettt e e s s ettt s e e s s e sab b b e et s e e s s e sabb b et e s esssesaabbabeeesesssasbbeaanesas 20
DETAUIT BERAVIOUNottt ettt e e e ettt e s e bt e e s et e e s et b e e e sasbeeeesabeeesstbesesasbeeessarenas 20
Configure the commit SUPPOIE FIIESoui i bbb 20
WIIEE the TEMPIALE ... e et b bbbt b et bbb e aeene e e aas 21
CONTFIGUIE T SEIVET ... ettt bbbt bt bt e e e e e be b bt et e beene e e e b e 22
INTEGRATION WITH BUGZILLA, MANTIS OR JIRA DEFECT TRACKINGcoiiittiriiieeiiiiiireiie e e s siibnree s e s sabbnneee s 22
Supported defect tracking SyStemMS and VEISIONSccviveiirieieiese et se et sre et e e se e 22
How the Bugzilla INtegration WOTKS.........ccciiiiiiiiie ettt st e e srers 22
(0110114 [TT g 07> A o] 1 23
(1S £ LU L =Y =\ (o LU R 23
Installing BUgzilla 0n WINGOWScoiiiiiieiicieice sttt a e e e saestesnesreeneeneeseens 23
Configuring INtegration 0N WINGOWS. ..ottt 24
CONFIGUITNG ON UNIX 1ottt bbb bbbt b e et b ettt 24
INStallation OF INTEGIALIONc..eviiiiieceee ettt 24
Testing of Integration (COMMAN TINE)........ciiiiiiiii e e 27
Testing of Integration (CVS SUItE TOMOISE)cueiviiiiierierierie ettt et nen 28
CREATING BRANCHEStttiiiiie ittt e st e ittt e e e st it b e st e e e e et st b e b e e e s e e s aa bbb b e e e s e e s s e bbb aeeeeeseesabbbaaeeeeesssabbabeeesas 33
CREATING PROMOTION LEVELSittttiiiieeiiiiitiriei e e e e ss ittt e s s e st seabbabees s e st sassbtbassseessasabbbasseeessesbbbaaeeeeesssaabbabeeesas 33
(0] [0 1 11 LT TP 33
IMERGING=IN BRANCHESccttiiiiettiee ittt e e ettt e e ettt e e s ett e e s et e s e s baeeessbbeeesesteesesabaeeesbbeeesasbeesesabansssbbeeesanteeeesarenas 33

Workflow, Defect Tracking and Email © Copyright 2004 - 2010 March Hare Software Ltd Page 3

CVS SUITE AND CM SUITE 2009 Build 3701 February 2010 Table of Contents

BUG ID'S (USER DEFINED CHANGE SETS) ...vtutiuiitttistatetestatesseseasestestesesseeesessessesessessase st ssesessessesessessesessessesees 33
AACCESS CONTROL LISTS oiiiiiiiiititiiie ettt e e e sttt e e e e e sttt e e s e s s s st b e bt e e seessaab b e bt e esesssasbbebesesesssabbbbesesesssassreres 33
(O gF=Ted I o0 1 1[4 4T=T 010 ORI 34
AACCESS ROIES ...ttt ettt ettt ettt e e s bttt e s e bt b e e s eab e e e s satae e s sabas s e s bbe e e e bt eeeseabeseesabaee s et besesbenaessrbeeeaan 34
AACCESS DY GIOUPS ... ettt ettt st b bttt et e b b e bt bt eb £ e b e e Rt e s e eb e ke e bt e bt e b e Rt eR b e nb e b e nbesbe et e e neeneenneneas 34

(D 1CY £ LU Y O RN 34
T (o] 1Y O SRR 35
(000 Y 1LY T 1 TSR OOT 35
L] SIS = 7 1SR 35
L6210 e = o PR 35
IMPLEMENTING IMETHODOLOGIES ... uuuttiitieeiiiiitreeeeeessaitsreeeessssaisssssssssssasastssssssssssisssssssssssssisssssssessessinssssssseses 35
T VLT WA O =YY= V=T TR 36

DT] o101l I A OL 101 A=Y LTIl RO 37

] (0] Lo @ o] [=Tot A O oo [OOSR USRI 38

[0] (0] (L0 TNV Lo o =] ISR 39
INSulation and COMMUNICATIONcocuuiieiiiiee ettt e ettt e e st e e e s sttt e e s st assesabeeessbbasssabasesssbbesessbbasesanes 39
PART HH — CLIENT ettt ettt ettt et e et e et e st e e et e st e st estee st esree st e e sasee st e e seee sttt e sreesereesneeranes 40
SETTING UP CVS SUITE STUDIO CLIENT ON WINDOWS ...uuiiiiiiiiiiiiiiiee e s siiiitiiee e e e s sesitbeesssssssssbbssssssssssnssssssesas 41
=LA Lo Y o T o T= Y O PSSP 41
CVSNT WORKFLOW ...ttt ettt ettt ettt ettt s et e e bt e e et e e st e s s te e sabe s st e e satessateesabessabeesabessaaessabessseeesans 42
VVORKFLOW DEFINITION .tiiiiiiiittttteeeeeiiitrsteeeeessiitssseessesssassssssessesssasssssssssesssasssssssssesssassssssssesssasssssesseesssassssses 42
VERSION NUMBERScuttieeiitteieieteteeiteeeesetteeesestesessbaeesabaesesabaeeessabeeesasbaeseasbeesesssbeeesassaesesabeseesssbesesantessssrenas 42
S0 1 0 42
Bt ettt ettt e et et e e —ee e —ee e —ee e —te e ——eatte e —eeatte e —eaateaa—aerteeartee s teearreeraeearrneies 42
LT [OO 42

(0T oTo Fo L C= (Y =T o 1) OV USSR 42
(1] 1111111 SRS 42
CREATING BRANCHEStttiiiiii ittt e e s ettt e e e s s s st bt e e e e e s s st b b e b e e e s e s s s e bbb b e e e s e s s s e bbb b beeeeessesabbbaaeseeesssabbabeeesas 43
CREATING SANDBOXESututtiiiieeiiiiittetttessiaiistsestesssssiitsssssssessiaissssssssessimmsstssssesssamitsesteeesssimtrssseeeessinsreee 43
IMPLEMENTING IMETHODOLOGIES ... uutttiiiieiiiiiittittieesieittbsessssssaistbaessssssasstsssssessssisstbsssssssssissssssessessissssssssess 43
RESEIVEA / UNTESEIVE ...ttt ettt ettt st st e bt s st e e s bt e e s bt e e s b e s s bt e s sbb e s sbe e e sbbessbeessbbeesbasesbaeesbenases 43

DT ({010 T A O=T) 1 r= Y [ET=To SRR 44
K100 €I o T A 0T S 44

Lo o] g (0] ATo] TNV, Lo To =] IR 45
INSUlation aNd COMMUNICATIONooiieviieiitiee ettt ettt et e e ettt e s et e e e s st e e s st et e s sbeeesssbesesaraeeesssbesessasbesesanes 45
UNRESERVED DISTRIBUTED WORKFLOWuttiiiieeiiiiitteiiieesssitbbetieessssssssssssssesssassssssssesssasssssssssessssssssssssessssins 45
OV SRS U =R L] [0 ISR 45
BIOWSE ittt e e e e b —— e e e e s b — e et e e e s i — b e e e e e e s e bbb ea e e e e e e e i bbbt e e ee e s i abbrrrraeas 46
CrRALE @ WOTKSPACE. eetete ittt sttt ettt bbbt bbbt et es e ee e b e e b e eb e e b e e Rt e s e e ne e besbeebesb e e bt ane e e enee e 46
Import files and directories t0 the FEPOSITOIY........cciiiiiiie i srens 46
Add a repository that is not already lStEAcciviiiiie i 46
Browse anonymously or specify a username and PassWOordcccovreiireieeieereiesese e e e see e e sees 47
Operations on your workspace: Add, COMMIL ELCvvviveeiieeeiese e 47
FIND OUT ABOUT OTHER PEOPLES CHANGEScceeeiiiiittttiteeeeesiitbreeeeeessietbsseessesssatsssesssesssasssssesssessssssssrasesessnnins a7
1N) 3 SO S 47
[CT0 Tl n X o011V 1Y =3 ST SRR 47
BUG FIXING WORKFLOW WITH PROMOTE .. .uvviiiiiiiiictiiiiee ettt ettt e e sttt e e s e s s s et ae s s e e s s esastbanesaseseses 48
Make changes to source code using Eclipse and commit t0 repoSItOrycccceveverereniesenieeieeeese e 48
View Changes iN BUGZITTAooeiiieee e et bt eeneeeeeas 50
Promote to test or production by bug NUMDETcooiiiii s 50
ADVANCED CLIENT FUNCTIONS ... oottt ettt st tes st bessabe s s besssbessabasssaessbbessntessrsesssresas 53
CREATING BRANCHES......ccittttiiiieeiiiiitttettee st saiistbesteessssiasbbaaesssesssabbassessesssabb e baaesesssasabbbaseeeessssbbbaaseeeesssaabbabeeesas 53
Creating a branch from a SANADOXccviiiiiiiiieiese et sr e b reere e e 53
Creating a branch WithoUt @ SANADOXc.ciuiiiieiiiire e sre e e e 53
CREATING PROMOTION LLEVELS ..o ittie ettt ettt ettt e ettt e e e e s et e e e s eates s e sabaeassetbeeesantaesesnbeneessrbeneaas 54
(0] [0 1 11 [T OO PPN 54
LY [0V IR\ (=1 1 1o o AT 54

Workflow, Defect Tracking and Email © Copyright 2004 - 2010 March Hare Software Ltd Page 4

CVS SUITE AND CM SUITE 2009 Build 3701 February 2010 Table of Contents

MEIGE IMBENOM ...t bbbt b bbb bbbt bt b et bbbt bbb 54
MERGING=IN BRANGCHESctttiiiittie e iteee e ettt ettt e e e ettt e e e e bae e e e ebae e e s eabeeeeaateeeesbaeeesebbeeeaastaesesabaeaesabbeeesanteeeesnrenas 54
F NI =T 0] o] OSSR USSR 55
MERGING-IN BRANCHES USING IMERGEPOINTooiiiiiiiiiciii ettt ettt ettt e e ebve e et e e e nneeas 55
What is @ mergepoint, and hOW dOBS ONE USE TE?oviiuiiiiiiiiieee e 55

Workflow, Defect Tracking and Email © Copyright 2004 - 2010 March Hare Software Ltd Page 5

CVS SUITE AND CM SUITE 2009 Build 3701 February 2010 Part | — Theory

Part | — Theory

Workflow, Defect Tracking and Email © Copyright 2004 - 2010 March Hare Software Ltd Page 6

CVS SUITE AND CM SUITE 2009 Build 3701 February 2010 Part | — Theory

Promotion model

A promotional model for managing changing documents or software is very common in
many organizations. Using a promotion model it is easy to ensure that the correct people
only “see” the documents and objects that are at the appropriate level of the promotion
process.

Example 1

A government department is required to draft a new piece of legislation. The document
evolves using a clearly defined model:

— Draft

— Legal Review

— Ministerial Approval

— Parliament

The document may go through several revisions during this entire process, however each
time it is promoted to the next level it cannot be changed at that level except by authorised
people. For example the public servant who authors the document cannot change the Legal
review copy.

Frequently the document is only ever changed at the lowest level of the hierarchy, however
meta data may be added at different levels. For example the legal review may wish to tag
certain paragraphs as needing changes, or they may make the changes themselves.

It is important that the department that prints the legislation to table before parliament
cannot accidentally print a copy that has not been through the entire promotion process.

Example 2

A software development company releases software four times a year. The software for
each release evolves using a clearly defined model:

— Development

— Review

— Test

— Integration Test

— Production

The software goes through several revisions during this entire process, however each time it
is promoted to the next level it cannot be changed at that level except by authorised people.
For example the programmer who authors the bug fix cannot change the Test copy.

The software is only ever changed at the lowest level of the hierarchy, however meta data
may be added at different levels. For example the code review may wish to tag certain
functions as needing changes to comply with company coding standards, or they may make
the changes themselves.

It is important that the users only run the Production version of the software and do not
accidentally run another version. If a CD is produced and shipped out, the distribution
department must have a fail safe way to ensure that they cannot accidentally deploy an
untested release.

Workflow, Defect Tracking and Email © Copyright 2004 - 2010 March Hare Software Ltd Page 7

CVS SUITE AND CM SUITE 2009 Build 3701 February 2010 Part | — Theory

What are Branches, Magic Branches and Vendor Branches

Branches, Magic Branches and Vendor Branches facilitate very powerful ways of
organising the planned development of your software projects. Often software development
managers indicate that they do not require branches in their solution. Take the time to
carefully read this section since once you understand what branches, magic branches and
vendor branches are and what they can facilitate you may find that it is very useful to you.

When are Branches, Magic Branches and VVendor Branches Used

VendorBranches, Magic Branches and Branches are used whenever the evolution of
changes to the documents is not sequential.

Example 1

A manager writes the outline of the current product specification for what the business does
and gives it to the marketing department so they can develop a “what we do” document for
sales people. However the manager has been instructed to also prepare for a new venture in
the near future so after sending the document to the marketing department the manager
begins to modify it again to bring it up to date with the new plans.

While the manager updates the document, the marketing department begin to change the
wording of the document to make it more suitable for a lay audience, adding pictures and
changing the formatting. The same document now has two streams of development.

Example 2

A software company releases version 1 of their software and immediately begins work on
version 2. However the sales department sell the software to a company who discovers that
a part of the application has a bug. Version 2 will not be ready for weeks yet, however the
customer requires a fix for the broken function much sooner. The software source code
now requires two streams of development.

Example 3

A freight company uses a software package to track cargo around the country, however the
software uses terminology that is different to what the company uses. The names are stored
in configuration files that the freight company modified to change the names to more
appropriate ones.

However the software company release version 2 with many new features that the freight
company want, but it has a new configuration files with a lot of new information.

The configuration files have two independent streams of evolution.
Example 4

A web designer manages seven web sites that are identical to each other except for a few
files on each. About 90% of the web sites share the same PHP code. The web site has a
single stream of development with multiple variations.

Example 5

A software vendor manages configuration files for their software as used by the most
important 20 customers. The configuration files have a single stream of development with
multiple variations.

Workflow, Defect Tracking and Email © Copyright 2004 - 2010 March Hare Software Ltd Page 8

CVS SUITE AND CM SUITE 2009 Build 3701 February 2010 Part | — Theory

What are the benefits to using Branches, Magic Branches and VVendor Branches

In each of the above examples the organization finds that the documents do not have a
sequential evolution of development but there are more than one stream of development (or
a primary stream and multiple variations). CVS uses branches to track how these changes
are made.

However using branches can also offer your organization some advantages because CVS
can automate some of your business activities.

Making the same changes twice

One of the benefits to using good configuration management tools is that if you need to re-
apply textual changes made to a document in one stream of development to another stream
then it can be automated.

For instance, in example 2 above the software developer can make the “bug fix” in “version
2” and use automated techniques to re-apply the same change to the “maintenance version”.

In the example 3 the freight company can use a vendor branch to apply the vendors changes
to the configuration files that they are using and therefore keep their labels.

Changes to binary files (eg: word documents or pictures) cannot be replicated
automatically.

Ensure security

If a document is evolving on more than one stream of development then it is possible that
one or more have different security requirements. For instance a software vendor may
develop enhancements to their application for two customers who are competitors. In this
case it may be necessary for the developers making changes for customer A not to be able
to see customer B’s changes.

In example 1 above, the developers from the “version 2” team may not be allowed to make
changes to the more stage “version 1, so it is possible to secure the access of the two
groups based on the branch.

Technical limitations on Branches — no deleting or renaming

It is not possible to delete or rename a branch created using CVSNT Server except in
special circumstances (eg: the branch was created and never used — no revisions are on the
branch).

CM Suite

EVS Server has the ability to track changes to branch properties and attributes (eg: the
name) over time, however there is no tool provided in the current release of CM Suite to
rename branches stored in EVS Server. If you are upgrading to EVS Server and this feature
is critical to successful completion of the upgrade please contact your technical account
manager who can assist you obtaining upgraded tools.

Choose branch names carefully — they may not be deleted or changed

Due to these technical limitations we strongly recommend that you choose branch names
carefully:

We recommend these guidelines for branch names, e.g.:
— avoid names whose meaning will expire, eg: stable
— avoid personal nouns, eg: joeys_branch

Workflow, Defect Tracking and Email © Copyright 2004 - 2010 March Hare Software Ltd Page 9

CVS SUITE AND CM SUITE 2009 Build 3701 February 2010 Part | — Theory

— Itis good to use numbers which are meaningful to the business, eg: stable ver 2 0 1

What is different between a Branch and a Magic Branch

Magic branches are used where the documents as a collection exist as several variations,
however as individual documents the majority are all identical. This is common for
configuration files or data (or configuration) driven web sites. Two Active Server Pages
web sites may exist that are identical except for a few graphics files and the locals. inc,
which sets the title for the pages and the name of the database to get the data from.

Magic Branches organise development so that the site-specific configuration can be
developed separately to the web site framework. Provided that the web site framework is
never modified on the branch the magic branch always will contain the same files as the
trunk.

Introduction to CVVS Meta Data and Deltas

CVS stores three things for each of your documents that it is managing:
— The latest version
— The history as differences to the latest version
— Meta data about each version d

Meta data that CVS keeps is very valuable and combined with the latest version and
differences are the key to understanding how branching works.

Based on the above information which CVS stores - if there are two streams of evolution for
a document there is a basic problem. The first version created is given a label 1.1 (in the
meta data). The second version is given version label 1.2. However if Person B makes
parallel changes to version 1.1 then it cannot be named 1.3 because you would lose the
changes between 1.1 and 1.2.

This is not a problem if Person B wanted version 1.3 to contain both their changes and
Person A’s changes, or person A’s changes were a once off that can now be lost.

However in our above examples what we need are two parallel development streams:
PersonA1.1->1.2->1.3
PersonB11->1111->1112->1.113

In this case person B wants to create a branch (or vice versa).

What creating a branch really does

When Person B creates the branch there are now two “latest versions” stored by CVS in the
repository. This allows differences to be kept for both. So there is now a “latest version”
for Person B’s branch and a “latest version” for Person A. Differences are kept for both

So if Person A decides that they need Person B’s changes between 1.1.1.2 and 1.1.1.3 but
not the other oncs it is easy to re-apply those using CVS to 1.3 to create version 1.4.

The reposistory only ever stores one complete copy of the versioned file, and that is the tip
of the Trunk. Therefore performing work on branches is never as efficient as on the Trunk
— for this reason all of the following development models discussed assume that the
majority of changes will be performed on the Trunk, and then migrated as necessary to
other branches.

Workflow, Defect Tracking and Email © Copyright 2004 - 2010 March Hare Software Ltd Page 10

CVS SUITE AND CM SUITE 2009 Build 3701 February 2010 Part | — Theory

Promotion model versus Branches

A mixture of branches and promotion models may be used, however it is common for
organizations to primarily use one or another for a particular project.

Within a single CVS repository it is allowable to use different branches and promotion
models on different projects.

Highly concurrent / Highly available vs. Structure and Control

The more your CM process relies on the Promotion Model the greater structure and control,
the more your CM process relies on Branching the more highly concurrent your
development will become.

Branching

Highly
Concurrent

A Branching Intensive Development Model

CVS was written originally with the requirements of open source developers in mind.
There are several things that are unique about open source development:
— Developers work geographically separated from one another
— Developers work concurrently on the same files but achieve a single unified result
— Development never ceases even during a software release

Consequently CVS has evolved very strong Branching techniques, since this allows for the
highly concurrent nature of Open Source development. For commercial software
development manager the last point in the above list may be surprising. In Open Source
development the software never reaches a stable state to promote to “Code Review” or to
“Test”.

To cater for this — the software is branched at an arbitrary point in time and a test build
made. Incomplete development is taken off the branch and build errors are corrected.
When the build process is stable on the branch then testing can begin and volunteer
programmers test and fix bugs on the branch. Once the release candidate is stable only then
are the changes merged back to the trunk (if at all).

Most commercial software development will not find this model suitable — however some
aspects of it may be helpful — in particular the ability to have the staff programmers most
productive on developing new features not hindered by the requirement to slow
development in preparation for release.

Workflow, Defect Tracking and Email © Copyright 2004 - 2010 March Hare Software Ltd Page 11

CVS SUITE AND CM SUITE 2009 Build 3701 February 2010 Part | — Theory

A promotion intensive “secure” model

CM systems that do not support any branching use a promotion intensive model:
— Developers work closely with the build and deployment team
— Only one developer works on a single source at a time and that developer usually is
working on only one task
— Development on that object often ceases until it has been released to the customer

Software development using these techniques can be slow, however the releases are stable
and management have a great deal of control over what can be delivered to customers at a
given point in time.

Mixed model

Mixing up the development models

Most organizations implementing CVS will want to use a mixture of the branching and
promotional models. For example:

— Develop Version 1 on the Trunk

— When Version 1 is feature complete Branch Version 1 Maintenance

— Begin work on Version 2 on the Trunk

— Finalise Version 1 on the Branch

— Promote Version 1 Branch to Test

— Fix Version 1 bugs on the Version 1 Branch and promote to test again

Using a mixture of the techniques can lead to a balance with the strengths of both systems.

Regardless of the choices you make CVS is always capable of reapplying the changes
between any two revisions to another revision — whether it is on the same branch or a
different one.

Patch management — getting fixes to customers

The CM model that you choose may be heavily influenced by business concerns such as
needing to deliver fixes to current software while also allowing development to continue on
newer versions. This is known as patch management.

Service Packs

Often organizations deliver stable combinations of patches to customers as a service pack —
or a point release. For example, version 1 is released and several bugs are found and fixed,
and three months after the first release version 1.1 (or version 1 service pack 1) is released
containing all bug fixes.

This service pack example can also be described in a time line similar to:
— Version 1
— Fixbug1
— Fixbug 2
— Fixbug 3
— Release Version 1.1

Workflow, Defect Tracking and Email © Copyright 2004 - 2010 March Hare Software Ltd Page 12

CVS SUITE AND CM SUITE 2009 Build 3701 February 2010 Part | — Theory

Patches

What happens if one of those bugs seriously effects the customer’s current day-to-day
operations? In this case it may be necessary to release one of the bug fixes immediately.
Since most customers are not affected the release version 1.1 is not created earlier — but a
patch is produced.

This patching example can also be described in a time line similar to:
— Version 1
— Fixbug1
— Fixbug 2
— Release Patch 1
— Fixbug 3
— Release Version 1.1

However the customer does not want any changed functionality except their bug fix. In the
list above it can be seen that bug fix 1 and bug fix 2 have already been completed and a
combined Release Patch 1 contains both fixes. A typical development environment may
have made 50 changes, and the customer does not want the responsibility of testing all those
fixes to get their environment working again.

The software company needs to balance the customer’s requirements with their own.
Specifically they need to ensure that the change is only made once but it is then applied to
release 1.1 and also later to release 2.0.

Careful consideration of the business requirements is necessary to design an effective CM
process. CVS is technically capable of supporting all these decisions.

In this particular example the choices the software organization would make would depend
largely on the frequency and the billing methods. If these individual patch releases are rare
or are charged to the customer then they will be designed as an exception. If they are
common then the SCCM solution will be designed with some level of automation for
reliability and reproducibility.

File and Directory Architecture
The physical format of the files that you version will affect the CM process.

Workflow, Defect Tracking and Email © Copyright 2004 - 2010 March Hare Software Ltd Page 13

CVS SUITE AND CM SUITE 2009 Build 3701 February 2010 Part | — Theory

— File types (Exports; Binary / Unicode / ASCII)

— File naming

— Include Files

— Size / Contents and the relationship to project activity

File Types

CM systems and CM theory largely require the actual file (or thing) being modified to be
versioned (managed) by the tools. The most common scenario for a CM system to version
something other than the actual file involved is in a database application. The tables
themselves (or the meta file) are not versioned, but a script containing the SQL instructions
to create that meta data.

If a copy of the thing (or file) is versioned then additional manual procedures must ensure:

— The actual file is updated when the CM system is updated

— The CM system is updated when the actual file is updated

— If the actual file is modified outside of the system and the CM system attempts to
overwrite a newer version with an older one that some system prevents this

— If the actual file is being modified that a lock or notification is placed on the CM
system so other users wanting to (or are) working on that file are informed.

File Naming

Names of file, or its location in a directory tree of files should not contain important
information about the nature or function of the contents. The correct place for that
information is in the CM system.

For example: 2005/ June/common . h is not a good name for a file since it is likely to
need to change often. Instead the file common/fin.h can have many branches or many
tags to differentiate different financial periods.

Poor filenames can lead to unnecessary refactoring of the repository (ie: name changes).

Include Files and Common Files

Files that are used by several other files (eg: a document template or an include file) should
reside in a separate directory.

Some configuration management systems encourage the users to put the common file in the
same directory as the file that uses it and have several links to this file.

This can lead to confusion as to the true nature of the file (ie: used by many — not specific to
this document or project). Instead store common files in a separate module (or directory)
and use branches for different variations used by different projects or users.

Often these common files will also require different security measures — eg: regular
developers can change projects, but only administrators can change the fin_h. include file.
CVSNT has ACL’s that allow repository administrators to set different levels of access for
users and groups. These ACL’s are designed to be applied to directories instead of
individual files.

Workflow, Defect Tracking and Email © Copyright 2004 - 2010 March Hare Software Ltd Page 14

CVS SUITE AND CM SUITE 2009 Build 3701 February 2010 Part | — Theory

Size and contents and the relationship to project activity

Large text or Unicode files in a well designed CM system are rare. If you have a large
document or file check that it cannot be better tailored to the project structures you use.
These guidelines can help you find if the document or file would be better divided:

— Different sections of the file / document are regularly maintained or modified by
different people. Eg: Joe always makes modifications to section A, and Bill always
makes changes to the Glossary. In this case the Glossary and each section are most
likely candidates for separate versioning. Then Bill and Joe can easily make their
changes at the same time as each other.

— The document or file is frequently modified or frequently the subject of contention
(several people or projects wanting to modify it at the same time). If the file has
smaller divisions this can reduce contention.

— The document or file is frequently modified and then unmodified by the same two or
three teams or people. Eg: Team A set the Fin._h file to #define YEAR 2005,
then team B change fin._h to #define YEAR 2006 then Team A set the
fin_hto#define YEAR 2005. This indicates that Team A and Team B
should be using different branches of the same file (branch “teamA” and branch
“teamB”) then the conflicts will not occur.

Notification of what is committed / added

CVSNT contains trigger libraries that can notify you when changes are committed to the
repository. You can choose either or both of:

— Email trigger.
— Defect Tracking trigger (Bugzilla, Mantis or Atlassian Jira).

What other choices do you need to make about CM

For Configuration Management to be effective it must be implemented in such a way that is
consistent with your corporate culture and is designed to deliver results according to your
management objectives. Therefore it is not usually possible for one company to mimic
another company’s successful implementation and also achieve a successful
implementation.

Management Obijectives

In order to evaluate the success of the implementation of CM it is necessary to understand
the objectives of management when they agreed to pay the cost. Simply because CVS is
free does not imply that there is zero cost to the implementation, and if money/time is being
spent then there are always expectations.

Analysis of these objectives early may lead to the conclusion that CVS is not technically
capable of delivering on the requirements. In this case either the project must achieve “buy
in” from management for different objectives or select an alternative tool that is technically
capable of delivering on the requirements.

Workflow, Defect Tracking and Email © Copyright 2004 - 2010 March Hare Software Ltd Page 15

CVS SUITE AND CM SUITE 2009 Build 3701 February 2010 Part | — Theory

Company Culture

The following two sections deal with technical architecture choices that a person designing
a new CM solution must make. These choices are guided overall by the management
objectives, but should then be guided by the company culture. Specifically the designer
should avoid using personal preference as a guide, or at least observe if that personal
preference is in keeping with the opinion of others in the organization.

The company culture is most apparent in the workflow that a developer follows when they
are working on source code. Is it methodical and planned or is it disorganised and
unstructured? Are flexible work practices used including job sharing and working from
home? Finally what is “the most important thing” — delivery or development? This last
issue is often very different for an organization maintaining legacy applications versus a
start-up without any current customers.

Reserved / Unreserved — Centralised / De-Centralised

These are the most fundamental choices in designing the workflow that your team will use
with a new CM solution.

Reserved / Unreserved

Does development “reserve” a file for editing by a single user, or can multiple users all edit
the same version of the same file at once?

Centralised / De-Centralised

Is a central reference copy of the source code always available, or do users work more
autonomously on their own personal copy?

There is no correct answer to this question. Some CVS and some CM textbooks suggest
that one technique or the other is the only right one, whereas the truth is that there is
probably only one right answer for your requirements.

Traditionally CVS is assumed to only be capable of delivering De-Centralised Unreserved
source code management. This is also simply not true. Even older versions of CVS were
capable of providing any of the four available choices. CVSNT has been enhanced to make
using it in these different ways more reliable and intuitive.

These choices are best understood as a matrix:

Reserved
Ceantralised

Unreservad
Centtalas

Workflow, Defect Tracking and Email © Copyright 2004 - 2010 March Hare Software Ltd Page 16

CVS SUITE AND CM SUITE 2009 Build 3701 February 2010 Part | — Theory

Reserved Centralised

A version of the source code for a particular release is stored in a central location.
Developers lock a file that they are working on. Other users can see the changes as they are
made, but are unable to alter the changes. Users working on other releases do not see the
changes. When the Developer finishes the changes the file is unlocked.

Reserved Distributed

Each developer has a version of the source code for a particular release stored locally.
Developers lock a file that they are working on and other developers with their own copies
cannot make changes to the file in the same release while it is locked. Other workers do not
see the changes made to this version until it is returned and they update their local copies.

Unreserved Centralised

A version of the source code for a particular release is stored in a central location. These
may be edited at any time by the developers. After files have been changed they may be
“rolled back” or “committed”. Developers usually work in teams. All developers can see
all the changes (committed and uncommitted) all of the time.

Unreserved Distributed

Each developer has a version of the source code for a particular release stored locally.
These may be edited at any time by the developers. After files have been changed they may
be “rolled back” or “synchronised and committed”. Developers usually work individually.
Several developers can work on the same file in the same release at the same time. The first
developer who “commits” can do so without making any other unrelated changes. Other
developers must “synchronise and commit” to add the first developers changes to their own.

Reserved Centralised / Reserved Distributed Mix

A version of the source code for a particular release is stored in a central location.
Developers lock a file that they are working on and it is copied into their personal work
area. Other workers do not see the changes made to this version until it is returned.
Developers may work individually or in teams. As soon as work is returned all other
developers see the changes. This model usually requires specific support in the
development tools. CVS Suite does not directly support this method, however CVS
Professional (Level 2 and Higher) can contact their sales representative regarding this
option.

Communication versus Insulation

Each of the abovementioned quadrants in the reserved/unreserved — distributed/centralised
matrix offers some degree of Communication and Insulation.

Effective configuration management requires a balance between these two priorities.
Communication

Developer Andrew is working on release two of the software, and Mark is working on an
urgent bug fix to the same software for a customer. It is important that the fact that Mark
has made changes to the same “base code” is communicated to Andrew — so that the new
version is tested to ensure the same problem doesn’t exist when that version ships out.

Workflow, Defect Tracking and Email © Copyright 2004 - 2010 March Hare Software Ltd Page 17

CVS SUITE AND CM SUITE 2009 Build 3701 February 2010 Part | — Theory

Insulation

Developer Mark needs to make an urgent fix to the Invoice Maintenance screen for a
customer — but Andrew is currently re-writing it because it is knows to have a large number
of inconsistencies. Mark must be insulated from Andrews’s development so that the urgent
changes can occur immediately.

Sources / Objects

Every software project is made up of a combination of source code and object code. Source
code generates object code usually using a compiler, e.g.: hello.c generates hello.o
and hel lo; ADDCUST . XML generates addcust.frm; and instal I .doc generates
install _pdf.

Object code can always be re-generated as long as the source code is available. The process
that generates the objects from the source is usually referred to as the build — and build
management tools such as MAKE or ANT can be integrated with your source code
controller such as CVS. Build scripts and makefiles are also considered source code since
the objects cannot be created without them.

Different source code management philosophies disagree on whether you should version
only the source code or the object code as well. The truth again is that it depends entirely
on your requirements and company culture.

For instance if the process which generates the objects is long, or requires software licences
that are not generally available — then storing the objects can be justified as simply
convenient. Alternatively it may simply mean an additional complexity that your
organization does not require.

Another strong reason to version your objects is that it can make reproducing a “release” of
your software much simpler. If you use CVSNT to do your release management (i.e.: your
production software runs compiled code checked out of CVSNT) then you can perform an
“upgrade” by simply doing a “cvs update”. This is akin to the “Windows Update”
technology.

Workflow, Defect Tracking and Email © Copyright 2004 - 2010 March Hare Software Ltd Page 18

CVS SUITE AND CM SUITE 2009 Build 3701 February 2010 Part 11 — Practical

Part |1 — Practical

Workflow, Defect Tracking and Email © Copyright 2004 - 2010 March Hare Software Ltd Page 19

CVS SUITE AND CM SUITE 2009 Build 3701 February 2010 Part 11 — Practical

Installing server integration

To install an integrated server that includes CVSNT, defect tracking integration, auditing
and automated builds you will require the March Hare integration DLLs. These DLL’s are
a part of the CVS Suite Server installation package available from the customer downloads
area.

Before configuring these components you should have successfully completed the section
Installing Bugzilla and MySQL for CVSNT Integrations and in particular Installing server
components. That section includes step by step instructions for installing Perl, MySQL and
Bugzilla on a Windows 2000/2003 server (XP Professional Workstation can also be used
provided that simple networking is switched off and the number of users will not exceed the
pre-defined limits of XP).

Integration with Email

When a user commits, tags or begins work on a file (with cvs edit) it is possible to
automatically send an e-mail to people who are “watching” that file.

More complex Email integration is possible using CVSMailer a separate (free) product.

Default Behaviour

When a user commits, tags or begins work on a file (with cvs edit) all users . It allows you
to put any contents in the emails, but the output format is fairly simple - it is no substitute
for a purpose designed notification program.

Email sending is disabled by default. To configure it for use you must do the following.

Configure the commit support files
commit_email, tag_email and notify_email

The commit support files commit_email, tag_email and notify_email contain the names of
the template files to use for commit, tag and edit respectively. Each line in these files is a
regular expression followed by a filename. The filename is always relative to the
CVSROOT directory and may not be an absolute path for security reasons.

The first matching line for each directory committed is used. If there is no match the
DEFAULT line is used.

template and checkoutlist

The name of the template file should also be listed in the checkoutlist administration file so
that it is available for the script to use.

users and checkoutlist

The administration file users is used to lookup the username -> email mapping. This file is a
list of colon separated username/email pairs. If this file does not exist or the username is not
listed the default domain name set in the global configuration is used.

Workflow, Defect Tracking and Email © Copyright 2004 - 2010 March Hare Software Ltd Page 20

CVS SUITE AND CM SUITE 2009 Build 3701 February 2010

Part Il — Practical

Create a file named users (no file name extension) that will map between users login names

(ie: Active Directory names) and their e-mail addresses:

I users - Notepad |:||E|rg|
File Edit Format Wiew Help
roj Blake:blake@hlakes-7-guide.com "~

kKerr svan:avon@blakes-7-guide. com

vila Restal:wila@blakes-¥-guide. com
Jenna Stannis:qenna@b1akes—?—guide.cum
olag Gan:gan@blakes-7-guide. com

pel Tarrant:tarrant@blakes-7-guide. com “

Add the users file to the checkoutlist file:

P checkoutlist - Notepad
File Edit Format View Help

#IThe_“gheckagt1is;” file is used to support additional version_controlled &
administrative files in $CVSROOT/CVSROOT, such as template files. :
#

The first entry on a line is a filename which will he checked out from
the corresponding RCE file in the $CWSROOTACVSROOT directary.

The remainder of the 1ine is an error message to use if the file cannot
he checked out.

File format:

[«whitespaces>]<filenames<whitespace><error message><end-of-Tines>

Ep

comment Tines begin with '#'
users I

Write the template

The template file is a text file listing the exact text of the email to send including headers.
The To:, From:, Cc: and Bcc: lines are used by the sending software to determine the

addresses to use.
An example commit template is:

From: [email]
To: cvsnt_users@mycompany.com

Subject: Commit to [module]

CVSROOT: [repository]

Module name: [module]

Changes by: [email] [date]
On host: [hostname]

[begin_directory]
Directory: [directory]

[begin_file]

[change_type] [filename] [tag] [old_revision] -> [new_revision]

[bugid]
[end_file]
[end_directory]

Log message:
[message]

A number of replacements are done on the file to format it for final sending. This differs for

each file, and is listed below.

Workflow, Defect Tracking and Email © Copyright 2004 - 2010 March Hare Software Ltd

Page 21

CVS SUITE AND CM SUITE 2009 Build 3701 February 2010 Part 11 — Practical

Configure the server

There are two ways that CVSNT can send email. The simplest is to set the SMTP Server
and default domain in the global configuration (CVSNT Server Control Panel in Windows,
/etc/cvsnt/PServer in Unix) and let the internal SMTP client send the emails.

This will not work in the case where authentication is required or the server is not capable
of SMTP. In these cases you should set the Email Command. This command should take a
list of 'to’ addresses as parameters, and a raw email as its standard input.

A suitable configuration for Unix systems is

/usr/sbin/sendmail -i

Similar programs exist for Windows.

Integration with Bugzilla, Mantis or Jira Defect Tracking

CVS Suite 2009 Build 3701 is the third release of CVS Suite which March Hare supports
linking CV'S with Defect Tracking systems like Bugzilla, Mantis and JIRA. If you are
upgrading from version 2.0.x please read this section carefully and then follow the upgrade
instructions in the appendix.

Supported defect tracking systems and versions
Bugzilla

The server integration is designed to support the Bugzilla schemas:
e 2.18 (which includes Bugzilla 2.17 and 2.20) and
e 2.22 (which includes Bugzilla 2.22, 3.0 and 3.2)

Mantis

The server integration is designed to support the Mantis schemas 1.1 and has been tested
with Mantis 1.1.1. Mantis can use any of several databases for data storage however the
integration supports only MySQL.

Jira

The server integration is designed to support the Jira schemas 3.12 and has been tested with
Jira 3.12.2. Jira can use any of several databases for data storage however the integration
supports only MySQL.

A Jira ‘bug number’ typically comprises a project key and a number. You can specify a
default project key in the defect tracking integration configuration (eg: PROJ) and then any
numbers will automatically be assigned to that key (eg: bug 1 will be ‘PROJ-1").

How the Bugzilla Integration Works

Version control without defect tracking may limit the benefits available to an organisation.
March Hare have designed CVSNT to integrate seamlessly with defect tracking systems at
the server. Furthermore this interface is designed to be transparent to the client user.

This section provides an overview of how the integration between CVSNT and Bugzilla is
operated.

Workflow, Defect Tracking and Email © Copyright 2004 - 2010 March Hare Software Ltd Page 22

CVS SUITE AND CM SUITE 2009 Build 3701 February 2010 Part 11 — Practical

Communications

The triggers DLL works in conjunction with the CVSAPI to communicate between the
client and server and fire the events to trigger recording of bug information.

Server
% Client
33383 CVSAPI.DLL
DO00A4 DO00Q
DD0D Gt Q0003
_1_1_1_]_-\1—1 000004 El
DDgno RIRR]E}
JJJJ;‘J:]
BUG_TRIGGER.DLL 0000A
D000

SQL uswﬁsﬁgm

0aoaa

Default Behaviour
The trigger DLL will be used if the triggers administrative file is configured to activate it.
The trigger is pre programmed with the following behaviour:

0 On completion of a commit with the —B bugid switch the bug identified with bugid will
receive the comment.

Installing Bugzilla on Windows

This section assumes you have already installed a compatible version of Bugzilla such as
2.18, 2.20, 3.0, 3.2 etc. For instructions on setting up Bugzilla on Windows please refer to
the section on Installing Server Components.

Workflow, Defect Tracking and Email © Copyright 2004 - 2010 March Hare Software Ltd Page 23

CVS SUITE AND CM SUITE 2009 Build 3701 February 2010 Part 11 — Practical

Configuring Integration on Windows

Use the CVSNT Control Panel to configure the plugin. Navigate to the “plugins” tab and
select the Bugzilla Integration plugin and press the Configure button.

e

Configure Defect Tracking Integration [5]
Plugin enabled pafact Tracker [Bugzilla 2,22-3.0 (2.2 v]
MySQL Database Logging
[Remote Host Private
Mame bugs Attachments
Username bugs [Ignn:nre commit message v«
Password Validation
Identity Exists
Email domain nodomain.org [ASSIGNED -
Assigned User
Bugzilla Ignore Admins
Location cilinetpubwwwroot! E Ignore branch test-branch
JIRA
Attachments B
Project K
LEE s QK] [Cancel
CV5 Suite Defect Tracking Integration (C) 2005-2008, March Hare Software,

Configuring on Unix

The Bugzilla integration is configured in the file /etc/cvsnt/PServer and is enabled
using the file /etc/cvsnt/Plugins.

Installation of Integration

1. If you have not already created a repository, create one using the CVSNT Server
windows control panel:

& CVSNT oy =

Repository corfiguration | Server Settings ICompatih\Iity Options I Plugins | Advanced

Server Name Vistax64

Name Root Description

Aestrepo C:/Users/Public/Documents

oK | [cancel | [spny

Workflow, Defect Tracking and Email © Copyright 2004 - 2010 March Hare Software Ltd Page 24

CVS SUITE AND CM SUITE 2009 Build 3701 February 2010

Part Il — Practical

2. Use the CVSNT Control Panel to configure the plugin. Navigate to the “plugins” tab
and select the Bugzilla Integration plugin and press the Configure button.

Configure Defect Tracking Integration

/|Plugin enabled pefect Tracker |Bugzi||a 2.22-3.0 (2.22) v|

MySQL Database
Remote Host

MName bugs

Username bugs

Password

Identity

Email domain nodomain.org

Bugzilla
Location ciiinetpubwwwroot! _

JIRA

0

Attachments

Project Key

Logging
V| Private

V| attachments
Ignore commit message «

Validation

| Exists

ASSIGNED A

| Assigned User
V| Ignore Admins

Ignore branch test-branch

CVS Suite Defect Tracking Integration (C) 2005-2008, March Hare Software.

EX

Ensure that the plugin is enabled and enter the following additional information:

— Database Name
— Database User

— Database Password

Default user domain (for where no translation exists in the CVSROOQOT/users file)
Location of Bugzilla (to trigger automatic e-mails)

And choose which options you want enabled:

Mark commit comments as private (note: automatic e-mails are not sent for private
comments)
Store commit deltas as attachements in patch format

You can choose validation additional options that you want enabled:

— Bug must exist

— Bug must be in the state specified
— Bug must be assigned to user

Workflow, Defect Tracking and Email © Copyright 2004 - 2010 March Hare Software Ltd

Page 25

CVS SUITE AND CM SUITE 2009 Build 3701 February 2010 Part 11 — Practical

3. The administration file users is used to lookup the username -> email mapping. This file
is a list of colon separated username/email pairs. If this file does not exist or the
username is not listed the default domain name set in the global configuration is used.

Check the CVSROOT module:

Command Prompt

cvs -d :sspi:localhost:/CS_FW co CVSROOT

4. Create a file named users (no file name extension) that will map between users login
names (ie: Active Directory names) and their e-mail addresses:

2 users - Notepad

File Edit Farmat Miew Help

rRoj Blake:blake@blakes-F-guide. com P
kKerr avon:avon@blakes-7-guide. com

wila Restal:wila@blakes-¥-guide. com

Jenna Stannis:qenna@b1akes—?—guide.cum

0lag Gan:gangblakes-7-guide. com

oel Tarrant:tarrant@blakes-F-guide. com »

5. Add the users file to the checkoutlist file:

£ checkoutlist - Notepad

File Edit Faormat Miew Help
The "checkoutlist" file is used to support additional version controlled
administrative files in $CWSROOTACWSROOT, such as template files.

The first entry on a Tine is a filename which will be checked out from
the corresponding RCS File in the $CWSROOTCWSROOT directory,

The remainder of the line is an error message to use 1f the file cannot
be checked out.

File format:
[«whitespacex]«<filenames<whitespaces<error messagex<end-of-1inesx

comment 1ines begin with '#'
sers T

CoHEFEHREREEEEEEEH

Workflow, Defect Tracking and Email © Copyright 2004 - 2010 March Hare Software Ltd Page 26

CVS SUITE AND CM SUITE 2009 Build 3701 February 2010 Part 11 — Practical

Add the file users to the CVSROOT and commit both the checkoutlist and users files:

Command Prompt

cd CVSROOT
cvs add users

cvs commit -m "config file changes"

Testing of Integration (command line)
1. Check out a module;

Command Prompt

cvs -d :sspi:localhost:/CS_FW co Projekte

2. Enable watches

Command Prompt

set CVSROOT=:sspi:myserver/CS_FW

cvs watch on

Workflow, Defect Tracking and Email © Copyright 2004 - 2010 March Hare Software Ltd Page 27

CVS SUITE AND CM SUITE 2009 Build 3701 February 2010 Part 11 — Practical

3. Release then check out a module:

Command Prompt

cvs -d :sspi:localhost:/CS FW release -d Projekte

cvs -d :sspi:localhost:/CS FW co Projekte

4. Create a bug using Bugzilla (use a web browser). Note down the bug number created in
Bugzilla.

5. Begin work on a file using a bug number:

Command Prompt

cd Projekte\Utils

cvs edit -b 2 —m "Work on adding a message for legislation 1234xx
compliance" hello.c

6. Make the changes to the source code hello.c
7. Commit all changes for this bug:

Command Prompt

cd ..

cvs commit —b 2 —m "Work on adding a message for legislation 1234xx
compliance™

The comment from the commit — and the name of the file being committed is logged in the
bug in Bugzilla.

Testing of Integration (CVS Suite Tortoise)

The CVS Suite version of TortoiseCVS include a “Use Bug” field on the edit dialog, and
both “Use Bug” and “Mark Bug” field on the commit dialog.

The “Use Bug” field is the most common method of working with change sets:

— Supply a bug number when you begin work on a file

— Can have several Bug numbers in use at the same time

— Can commit files selectively based on the bug number

— Patches and Checkin Comment can be attached to Bug in Defect Tracking System
(Bugzilla)

Workflow, Defect Tracking and Email © Copyright 2004 - 2010 March Hare Software Ltd Page 28

CVS SUITE AND CM SUITE 2009 Build 3701 February 2010

Part Il — Practical

The “Mark Bug” field is an alternative method of working with change sets where the bug
number (or numbers) are supplied at the time of check in / commit only. The patch and
comment are still applied to the bug in the defect tracking system (Bugzilla).

Firstly perform the steps 1 to 4 of “Testing of Integration (command line)” above.

1. Set the Tortoise Preference:

[E=3(Eel =)

@_C)d L » Public »

‘ Organize » izt Views ~ [Open [Shanng Seffings

- ‘ “f| ‘ Search

2|

Eavorite Links MName Date modified Type Size
Ld)p bnlis T ANV NND 108 Eil= L. der
5| Documents
E . K P Open der
B Pictures A Explore er
@ Music Fo er
N Share...
% Recently Changed kp der
BB searches Br @) CVS Checkout... der
Ju Public W VS 3 Make Mew Module..,
Restore previous versions &_] Checkout TortoiseCVS
i Combine supported files in Acrobat... W Preferences...
Send To ¥ @ Help...
ﬂ; About...
Cut
Copy
Create Shortcut
Folders C Delete
Public Documents Rename
f File Falder B Fps
Date modified:

9 TortoiseCYS - Preferences

Main | Palicy | Promate I Tools | Advanced | Appearance | Cache I lgnored files

Progress dialog:

Progress messages:

Crveray icons:

Folder overay icons:

[Clu::se manualby

| Quiet

TaortoiseCVS

Browse...] [

Rebuild... |

Changes wont take effect urtil you log off or reboot.

[Change icon when folder contains changed files.

Language:

Show dialog when edit:

Loaok for a Modules file:

Autoload changed folder icons:

[Autoload folder icon ovedays

[Winduws default

Show edit options

[Show modules

Enabled: Show the edit options dialog.
Disabled: Do no show the edit options dialog

] [Cancel

Workflow, Defect Tracking and Email © Copyright 2004 - 2010 March Hare Software Ltd

Page 29

CVS SUITE AND CM SUITE 2009 Build 3701 February 2010 Part 11 — Practical

2. Begin work on a file using a bug number:

[F=1[Mo =X
mv| .. » Public » Public Documents » testproj » testproj b4 | +y | | Search
‘ Organize = Views ~ 90 Open ~ [Sharing Settings
Favorite Links Mame = Date medified Type Size ot
E Documents S stelafic 10/29/2008 11:10 ... C++ Source 1KB
o) K stelafx 10/29/200811:09 .. C/C++ Header 1KEB il
[Pictures [targetver 10/29/200811:09 ... C/C++ Header 2KE
B Music Ciltestproj 10/29/2008 11:09 C++ Source 5KB
Mare » [l testproj Open C++ Header 1KB L
Folders v | Citestproj Edit n 24 KB 3
E]f Favorites i ﬂ'testproj Open With y [Eource Script 4 KB
m Links D é’?testproj ++ Project 5KB
B Music - | g testproj. Share... ual Studio Sour... 1KB -
T testproj Date modified: 1 & CVS Update
G+ C++ Source Size: 4 CVS Edit
Date created:] & s 5

s TortoiseCVS - Edit = [=[]

Folder:
Comment Histony:

Bug Mumber:[2

Comment: [C] Wrap lines
Changes to make example clearer

0K | | Cancel

Workflow, Defect Tracking and Email © Copyright 2004 - 2010 March Hare Software Ltd Page 30

CVS SUITE AND CM SUITE 2009 Build 3701 February 2010

Part Il — Practical

3. Make the changes to the source code testproj.cpp

W] testproj - Microsoft Visual Studio
Eile Edit View

G- e % BB 9--E-5 | b Debug =
BRbae|(EfE|= 2 0080380

Project Build Debug Tools Test Window Help

41

SolutionE..» I X testproj.cpp* | Start Page | il ﬁ
B | i 5
22IER [eobal scope) = @ About(HWND hDIg, UINT message, W = || 3
ﬁm testproj.h - ML =
7 Resource Files cass MO b =
_ if (LOWORD (wParam) == IDOK || LOWORD(wParam) = *||3

ﬁ@ zsmall.ico =
@[testproj.i ! e
25 F'm.!-'c':' MessageBox (hWnd, T("Are you sure?"), T("Co g

& testproj.rc EndDialog (nDlg, LOWORD(wParam)): i
¥ SourceFiles | return (INT_PTR)TRUE; &
ﬁ?:ﬂ stdafu.cpp] g
+C] testproj.cpp break; =

| ReadMe.txt - } D
L L} [return (INT_PTR) FALSE; -
&5 [FC- [@P- | || 1 3
Pending Checkins > 3 X
[CheckIn &% Comments | [v|‘%,|,|ﬁ||_¢3"3
Marne < | Change type
= [E;, Iterns below solution 'testproj' £
[2 Files below testproj’
ER o I (1 R R SR il
< | m | 3
|Ccrde Definition Window | *2 Call Erowser|@ Output|ﬁ Pending Checkins
Ready Ln 184 Col 42 Ch33 NS

Workflow, Defect Tracking and Email © Copyright 2004 - 2010 March Hare Software Ltd

Page 31

CVS SUITE AND CM SUITE 2009 Build 3701 February 2010

Part Il — Practical

4. Commit all changes for this bug:

- 4

te Links Mame Date modified
I Gl stdafx 10/29/2008 11:1{
|K stdafx 10/29/2008 11:09 ,
Frures 5 targetver 10/29/2008 11:{
usic il testpy=: 1nmnmnng 10k
ore ¥ |F] testpr Open (
e v | Catestpr Edit /
| 1l ﬂ'te:tpr Open With 3
M .,-ézgtestpr =
o —— Share... (
| pup T | TEEEER
testproj D Vs Diff 3
+ C++ Source | & CVSUpdate ;
A CVs Cnmrt'g:... 2

F CVs
':...“,; N W e S S

¥ TortoiseCVs - Corrﬁli‘t [| =]
Falder: C:\Users'\Public*
Comment History:

Bug Number:lz [Use Bug [Mark Bug

cuments'testprojtestproj'.

Comment: 7] Wrap lines
This program now displays a message as per customer request -
Filename Filetype Format Status Bug

[¥] testproj.cpp Ce+ Source Tent/ASCI Locked

To see the changes you have made, double or right click on the files above.

[ok | [Cancel | [Refresh

1 fileds)

/3 Bug 2 - sample bug - Microsoft Internet Explorer

User abarrett commited these files:
/C5_FW/Projekte/Utils/hello.c
With comment:

The program now displays a second message &S per customer redquest.

{bug 2j

File Edit Yiew Favorites Tools Help | ﬁl‘

G Back ~ = - @) ot | Q) search Favorites €48 | B- S =

Address I@ http:flocalhostibugzillafshow_bug.cgivid=2 j @ Ga | Links **
=

| |

4]

Bug List: First Last (This bug iz not i your kst) Show st Query page Enter new bug
|

|@ ’_ l_ l_ ’_ l_ Local intranet

of

3
4

Workflow, Defect Tracking and Email © Copyright 2004 - 2010 March Hare Software Ltd

Page 32

CVS SUITE AND CM SUITE 2009 Build 3701 February 2010 Part 11 — Practical

Creating Branches

Branches may be created:
— By running the CVS command tag with the —b tag option on a checked out copy
(sandpit)
— on the server using rtag
— Using the CVS Suite Studio graphical client

Also see the section Advanced Client Functions for information on this topic.

Creating Promotion Levels

CVS uses branches to implement a promotion level. The difference is simply how you use
them.

See the section Advanced Client Functions for information on this topic.

Promoting

Promote may be done using:
— the CVS command update and commit on a designated promotion level (sandpit)
— Using the CVS Suite Studio and TortoiseCVS graphical client (Promote menu)

There are two ways to promote a revision from the Trunk (or a branch) to a promotion
level: Move and Merge. See the section Advanced Client Functions for information on the
Promote Move and Promote Merge topics.

Merging-in Branches

Promote may be done using:
— the the CVS command update with the -j branchname flag (sandpit)
— Using the CVS Suite Studio and TortoiseCVS graphical client (Merge menu)

See the section Advanced Client Functions for information on Merging-in Branches and
Using Mergepoints.

Bug ID's (User Defined Change Sets)

Most CVS commands now support a a user defined change set, bug or defect identifier.
The identifier can be used to group or mark files, and the identifier can also be used to
operate on files with that identifier. See the Client section for more information on how to
use this feature in the client, and the Integration with Bugzilla heading in this section for
how to use the bug number on the server.

Access Control Lists

With Access Control Lists you can define complex rules for which users or groups of users
can perform different tasks on parts of your CVS repository. Access Control Lists are most
commonly used to prevent unauthorised merging, update or delete of objects from test or
production branches.

This security information exists outside of the permissions on the individual files, and
therefore is kept in place when the repository is restored from backup, moved between
servers or moved between server platforms (eg: Windows to Unix).

Workflow, Defect Tracking and Email © Copyright 2004 - 2010 March Hare Software Ltd Page 33

CVS SUITE AND CM SUITE 2009 Build 3701 February 2010 Part 11 — Practical

Access Control Lists are primarily designed to control access to CVS modules and
directories. It is possible to set different access control levels to different files in a directory
however the results of the “none” keyword may not be intuitive. You should always
assume that if a person has permission to read a directory that contains a file that they also
have permission to read that file.

Chacl command

Using CVS command chacl you can define access control lists to manage security on the
CVS repository.
cvs chacl [-R] [-r branch] [-u user] [-j branch] [-n] [-p priority] [-m message]

[no]{read|write]create|tag]control}[,--.-1]
[-d] [Ffile or directory...]

-a access Set access

-d Delete ACL

-j branch Apply when merging from branch

-m message Custom error message

-n Do not inherit ACL

-p priority Override ACL priority

-r branch Apply to single branch

-R Recursively change subdirectories
-u user Apply to single user

The chacl command operates with a locally checked out copy of your files.

Access Roles
CVSNT defines the following access roles:

— Read - able to read this file

— Write - able to add revisions to this file

— Create - able to add a file to the repository

- Tag - able to apply tags to files and create branches
— Control - able to administer this file and change ACL’s

Access by Groups

The Access Control Lists by default assign permissions to a user. Any groups defined in
the group administration file can also be used as a username. See the section on the group
administration file for more information.

Typically if you are using the SSPI protocol on a Windows server the groups are the
Windows Active Directory Groups, not the groups defined in the group administration file.

Default ACL’s

Every object stored in the CVSNT repository has a default ACL. This can be set using the
following command:

cvs chacl -a access -R

If no access is specifically set, then the default is that all users can read, write, tag and
create. The control permission is reserved for the members of the admin group
(Administrators on windows).

Workflow, Defect Tracking and Email © Copyright 2004 - 2010 March Hare Software Ltd Page 34

CVS SUITE AND CM SUITE 2009 Build 3701 February 2010 Part 11 — Practical

Branch ACL’s

Each branch will use the repository default ACL unless set otherwise. The branch access
can be set using the following command:

cvs chacl -r branch -a access -R

Commit ID's

Every commit transaction in a CVS repository has a unique commit ID. This ID can then
be used to re-action the exact same change set at a later date.

Commit ID’s are also available in the administrative files as a private variable.
For example, to rollback a commit that you just performed:
cvs update —j @commitid —j "@<commitid™ filename Or modulename
“@<commitid” revision before that commit
@commitid revision of that commit

Release tags

tag=tag
To allow customers with multiple deployment environments for their applications it is now
possible to base one tag on another.

So the production environments can checkout the branch Production rather than
prod_1 2 2. When release 1.2.3 is ready for production the administrator sets
Production=prod_1 2 3 and the next time a CVS update command is issued in the
production environment the new production version will be installed.

Branch alias
Branch x is also known as y
cvs tag —A —r existing-tag new-tag
Branch point in time alias
Branch x at this point in time is known as y

cvs tag —r existing-tag new-tag

Implementing Methodologies

In the first chapter we discussed four methodologies for versioning, and other decisions
related to your management objectives and company culture.

This section provides a guide to how to implement those choices with server side
configuration.

Some configuration is also required in how the client is used which is discussed in the
Clients section.

Implementing the methodology is generally a lot simpler than deciding what it should be. It
is strongly recommended that you should decide what versioning methodology will best
meet your business objectives and fit within your company culture before installing and
configuring CVSNT server or any clients.

Workflow, Defect Tracking and Email © Copyright 2004 - 2010 March Hare Software Ltd Page 35

CVS SUITE AND CM SUITE 2009 Build 3701 February 2010 Part 11 — Practical

Reserved / Unreserved

By default CVSNT server uses the unreserved model. To enforce use of a reserved model
you will need to make configuration changes to the server, and also to the client.

Reserved
CVSNT has four implementations of the reserved model:
Administration Reserved — Not recommended

The administrator can reserve all versions and all branches of a file. This is a very basic
lock and its use is not recommended.

All reserved modes use watches

To use any of the reserved modes it is necessary on the client to enable watches using “cvs
watch on” in the working directory (where the repository is checked out). Clients such as
Eclipse and Tortoise have settings that enforce this automatically. See the Clients section
for more information.

Reserved for Communication Only

This is not really reserved at all however is worth mentioning. Using this technique all
users can edit the same version of the same file at the same time, however each is informed
that other users are editing it. To enable this requires no changes on the server.

Reserved Co-operatively

This is traditional reserved editing while still allowing users to override it and work in an
unreserved manner. To enable this edit the cvswrappers administration file, set the file
types which should use this mode to —kx (or —kvx etc).

2 cvswrappers - Notepad

File Edit Format Wiew Help

-k expansion mode value:
*

and walue is a single-gquote delimited walue.
For example:

#*, gif -kb

¥, jawa -k T

b

Workflow, Defect Tracking and Email © Copyright 2004 - 2010 March Hare Software Ltd Page 36

CVS SUITE AND CM SUITE 2009 Build 3701 February 2010 Part 11 — Practical

Reserved Exclusive

This is traditional reserved editing and will prevent CVSNT working in an unreserved
manner. To enable this edit the cvswrappers administration file, set the file types which
should use this mode to —kx (or —kvx etc). By setting this in the administration file it is
possible to allow some repositories to use reserved exclusive and some to use other modes.

I cvswrappers - Notepad
File Edit Format Miew Help

The -m option specifies whether Cws attempts
The -k option specifies keyword expansion (e,
Format of wrapper file ($CWSROOTCWSROOT Cwsy
wildcard loption walue] [option walue]..

where option is one of
-k expansion mode value:

and value is a single-quote delimited walue,
For example:

#%. gif -kb

¥, jawa —kx

#
#
#
#
#
#
#
#
#
#
#
#
#
#

<.

Distributed / Centralised

By default CVSNT clients are designed to work in a distributed mode. If you are working
distributed then you will checkout an entire module to your local drive and work on it there.

If you do not have support with March Hare Software Ltd then you will not receive any
assistance with attempting to use CVSNT clients on a network share.

Checking out single files or only a portion of the source code to the local disk and the
remainder of the files being available in a central shared area requires setting up a trigger on
the server.

When a file is modified and committed to the CVSNT server then the relevant directory will be
updated with the new reference copy. For example:

Location branch

All Files and Directories

lusr/opt/devel TRUNK
lusr/opt/test 1 0 Test 1 0
Jusr/opt/prod_1 0 Prod 1 0
lusr/opt/test 1 1 Test 1 1
Jusr/opt/prod_1 1 Prod 1 1

Workflow, Defect Tracking and Email © Copyright 2004 - 2010 March Hare Software Ltd Page 37

CVS SUITE AND CM SUITE 2009 Build 3701 February 2010 Part 11 — Practical

Updating Centralised Copy on Windows Server

The CVSNT Server for Windows includes a plugin for build management. When the
commit has completed the file bui Id_make . bat in the CVSROOT will be executed with
the module name and branch as parameters.

A simple DOS batch script can be used to run cvs update commands on the correct
directory for each branch.

Updating Centralised Copy on Unix, Linux or Mac OS X Server

When the commit has completed the server will execute the shell scripts or perl scripts
specified in the postcommand administration file.

Create a shell script or perl script to update the correct reference directory based on your
own rules. Alternatively if you want to use a simpler interface then you can use the build
management plugin and a bui Id_make .sh script in CVSROOT.

Store Object Code

By default CVSNT will store all code, though some clients such as Eclipse have settings
that can ignore object code overriding this.

If you decide to store object code then you will have to decide the point in time that the
code should be checked in. Generally this is either the same time as the source is checked
in (from the developer) or at build time.

Checking the object code in from the build environment ensures that the object code is
compiled using a pre-defined environment not subject to developer preferences.

Keeping object code, from the developer

If you decide to keep the developers copy of the source code there is nothing more to do.
Keeping object code, from the build environment

The following needs to be configured:

— Restrict access permissions on the directories containing the object code so that
developers cannot commit changes to these files.

— Structure the repository so that developers can easily commit source code and not
object code (eg: /src /bin /lib).

— Use the build manager plugin to begin a build when changes are committed. At
completion of the build a commit should run from the “reference area” which
includes the build log file. Optionally e-mail the build log to the author.

Ignoring object code

To configure CVSNT to ignore object code set each “file extension” for the object code
files in the cvsignore administration file, eg:

Workflow, Defect Tracking and Email © Copyright 2004 - 2010 March Hare Software Ltd Page 38

CVS SUITE AND CM SUITE 2009 Build 3701 February 2010 Part 11 — Practical

B cvsignore - Notepad E “E'[EI

File Edit Format Wiew Help

f*. ohj Q
. Bxe

. 2Om

.Frm

5T

.rpt

s ESEW

H
L
H
H
L
H

Promotion Model

Whilst promotion levels are logically managed on the server, the creation and manipulation
of them occurs on the client.

It is usual to configure promotion branches so that developers cannot commit changes. This
is usually reserved for QA staff.

Insulation and Communication
Insulation

The level of insulation between users is a factor of:

— Branching / which “reference area”
For configuring this please see the section on setting up centralised areas using
triggers.

If two users share a branch and a “reference area” then when one completes
their work then the other will immediately see the same changes. If they
work on separate branches then they will have different “reference areas”
and will not see each others changes until there is an explicit merge into their
branch.

— Shared “working directories”
If two users share a working directory on a network drive then they will have no
insulation.

Communication

Automated communication is set up using the Email Integration or CVSMailer. See the
earlier sections on Email integration and/or CVSMailer for more information.

Workflow, Defect Tracking and Email © Copyright 2004 - 2010 March Hare Software Ltd Page 39

CVS SUITE AND CM SUITE 2009 Build 3701 February 2010 Part 111 — Client

Part 111 — Client

Workflow, Defect Tracking and Email © Copyright 2004 - 2010 March Hare Software Ltd Page 40

CVS SUITE AND CM SUITE 2009 Build 3701 February 2010 Part 111 — Client

Setting up CVS Suite Studio Client on Windows

CVS Suite Studio is the recommended tool graphical front end for CVSNT and provides a
range of powerful commands for performing the most common CVSNT tasks in a clear and
simple user interface.

Set and Manage ACL’s

To use ACL’s you first must configure the ACLMode, see the Administration section for
more information. To deny access by default set aclmode = normal (if you do not set this
CVSNT will allow access by default). Once the repository wide default is set, you can then
use CVS Suite Studio to add or remove permissions to folder on the server:

CVS Suite Studio 2.5.03... = |[Bf
File View Help

Permissions - macjava [Z|

'..'E-:g Local Servars Condition {Does naot include inherited permissions):

5] bbcclient

= melb0o40

= Zksrvr0l

B 2ksrvr0l intranet

=] Work Repo

= E:l cwsnk main repository
I3 C¥SROOT

1) Smartloader

!ﬁmer:abarrett
!ﬁUser=sbarrett

[0 B - - B
]

I as400-demo [Add... L‘ ’ Remave]
I3 cvs-as400 %
1) cvsdeps Permissions for ... Allowy Deery
=2 W - All Access i [¥
a‘i‘s Mew Direckory Read 0 =
a4 virite O ¥
i Create O [
¥ Tag 0 o
e Cankral O ¥
b o
E Message | Sorry - vou are not allowed ta look here| !
£ Properties b
—7-..‘,:'%\."_':"., SR T QK] [Cancel]

Workflow, Defect Tracking and Email © Copyright 2004 - 2010 March Hare Software Ltd Page 41

CVS SUITE AND CM SUITE 2009 Build 3701 February 2010 CVSNT Workflow

CVSNT Workflow

This section is intended to give the practical workflow when working with one of the
popular methodologies discussed in the theory section. This section assumes that your
repository, triggers (eg: keeping a read only “reference” copy of the source), integrations
and access controls are already set up.

Workflow Definition

There are many techniques to define the workflow of your organisation in CVSNT,
however these are not usually implemented in the client — but in the server using rules.
There are many places on the server that rules can be defined depending on how they affect
the versioning process. See the Administration section earlier in this book or Implementing
Methodoligies below for more information about defining the workflow.

Version Numbers

The internal version numbers used by CVSNT do not specifically correlate to the version
identifiers used by you or your organisation to identify individual file revisions or the
revision of a group of files (such as a book or a software application).

Therefore it is important to distinguish between the version numbers used internally by
CVSNT and external numbering schemes used by you. These external numbering schemes
can and should be recorded in CVSNT as tags or labels.

Bug ID's
Most CVS commands now support a bug or defect identifier. Often this is much more
useful to the end user than the physical or internal version number of the file. The bug

identifier can be used to group or mark files, and the identifier can also be used to operate
on collections of files already marked with that identifier, including merge and commit.

Edit

-B Mark this file with this identifier. A working revision can only have a single
identifier.

Unedit

-b Unedit files with this identifier

Update (Merge)

-b When merging development branch (or Trunk) into the release branch it will take
the lowest revision with that bug number and the highest revision with that bug
number and merge the differences into the current branch. This is not a mergepoint.

Commit
-b Commit files with this identifier.

-B Commit files and mark the new version with this identifier.

Workflow, Defect Tracking and Email © Copyright 2004 - 2010 March Hare Software Ltd Page 42

CVS SUITE AND CM SUITE 2009 Build 3701 February 2010 CVSNT Workflow

Creating Branches

Creating Promotion levels and branches is not a part of the regular workflow — these are
administration functions. Merging changes up (promoting) is also an administration
function. Generally this section does not describe these activities since they are not
generally performed from the graphical clients. These administration activities are best
performed using the command line CVS tool. See the Administration section for more
information.

Creating Sandboxes

Creating sandboxes is not a regular part of the users workflow. If you are using the
Distributed model of CM then each user generally has a complete “checked out” copy of the
source from the server in a sandbox. This sandbox usually resides on the local workstations
hard drive, but may exist on a network share (see system requirements). This checkout is
generally done once and rarely deleted (released) and started again.

If you are using the Centralised Reserved model then each user checks out and begins work
on a file or set of files in one action.

CVS Suite includes the CVS Suite Studio which is the ideal tool for creating workspaces.
TortoiseCVS and WinCVS can also be used to create workspaces.

Implementing Methodologies

In the first chapter we discussed four methodologies for versioning, and other decisions
related to your management objectives and company culture.

This section provides a guide to how those choices map to use on the client.

Reserved / Unreserved

The majority of graphical CVS clients are designed to allow you to work in unreserved
mode. Some clients allow you to also work in reserved mode to varying degrees.

To nominate a particular file type as one that should use “reserved” mode, define it in the
cvswrappers administrative file with —kc (for cooperative reserved, or reserved for
communication only) or —kx (for traditional reserved). More information on the
administrative files can be found in the administration section on cvswrappers.

If you have a file type that should be reserved in some projects but not in others — create
separate repositories for these two types of project.

There is nothing to set to enable unreserved mode.
Reserved
Working in reserved mode requires two steps in a “checkout process”:

— Checkout (copy the file(s) to a work area)
use the cvs checkout command.

— Reserved (allow this file to be worked on by the user)
use the cvs edit command.

Workflow, Defect Tracking and Email © Copyright 2004 - 2010 March Hare Software Ltd Page 43

CVS SUITE AND CM SUITE 2009 Build 3701 February 2010 CVSNT Workflow

All reserved modes use watches

To enforce the need to “cvs edit” the file before changing it there must be a mechanism for
CVSNT to know that the files should be checked out read-only. This is usually achieved by
setting watches on. Note: if you are using —kx or -kc defined in the cvswrappers then this is
not required.

To set watches on, checkout a module from the cvs repository and issue the command: cvs
watch on to activate. In future all workspaces created for that module will be created read-
only.

Reserved for Communication Only

This method employs the use of watches (as described above) but not —kc or —kx locking
modes. In this way the files will be read only, but there is no hindrance to how many files
and how many users of a file can access it at a time.

Reserved Co-operatively

Co-operative reserved uses the -kc cvswrappers option to ensure that files are not
committed unless they are first editied. Since the watch mechanism merely makes files
read-only, a smart user could simply remote the read-only attribute of the file using the unix
chmod or DOS attrib commands.

If you are using co-operative edit’s enforced in cvswrappers then when that changed file is
committed the CVSNT server checks that it has already received an edit notification. If it
has not then the user cannot commit the changes until the cvs edit command is used. More
than one user can still edit a file at the same time, but they are always informed of this (and
can be alerted via e-mail with the Email plugin).

Reserved Exclusive

Exclusive reserved uses the -kx cvswrappers option to ensure that files are not committed
unless they are first editied, and prevents more than one user at a time having edit access to
the file. Since the watch mechanism merely makes files read-only, a smart user could
simply remote the read-only attribute of the file using the unix chmod or DOS attrib
commands.

If you are using exclusive edit’s enforced in cvswrappers then when that changed file is
committed the CVSNT server checks that it has already received an edit notification. If it
has not then the user cannot commit the changes until the cvs edit command is used. Since
only one user at a time can have a file edited then it enforces the exclusivity of the lock.

Distributed / Centralised

The majority of graphical CVS clients are designed to allow you to work in distributed
mode. Some clients allow you to also work in centralised mode to varying degrees.
Implementing the Centralised model requires a read-only copy (shadow copy) of the
workspace (or a branch of the workspace) available at all times. See the Section Distributed
/ Centralised in the Administration section.

Store Object Code

By default CVSNT will import and version all files in a directory. To exclude object code
then set up the cvsignore administrative file.

Workflow, Defect Tracking and Email © Copyright 2004 - 2010 March Hare Software Ltd Page 44

CVS SUITE AND CM SUITE 2009 Build 3701 February 2010 CVSNT Workflow

Keeping object code, from the build environment

To keep the objects from the build environment only then change the access control list to
allow developers to check out object code but not check it in. The build process should then
“login” to cvs as an authorised user.

Promotion Model

See the section Advanced Client Tasks for more information about using the promotion
model from the client.

Insulation and Communication
Insulation

Insulation is implemented by having separate workspaces for users who should be insulated
form each others changes. If the projects are sufficiently different then they should also use
different branches. See CVS Suite Studio for details on creating workspaces.

Communication

Communication is implemented by configuring the E-mail notification integration on the
server. If two developers are both watching the same files then they will be alerted by e-
mail when changes occur. Also see the headings Find out about other peoples changes and
All reserved modes use watches in this section.

Unreserved Distributed Workflow

For a developer or an author working with source code files or documents controlled by
CVSNT you will need to:

— Create a sandbox if one does not already exist

— Inform CVSNT that you have began working on a file (optional)

— Check your changes

— Synchronise your local file with the repository (update) or add a new local file to the

repository
— Store your changes into the repository (commit)

The final stage also requires that you enter a description of your changes.

This workflow can be completed using any style of interface, we will look at Tortoise and
WinCVS below.

CVS Suite Studio

CVS Suite Studio is the primary client graphical user interface of CVS Suite. CVS Suite
Studio allows you to browse CVSNT repositories and to create workspaces containing
individual files or entire modules and directories from either the Trunk or any branch or tag.

Workflow, Defect Tracking and Email © Copyright 2004 - 2010 March Hare Software Ltd Page 45

CVS SUITE AND CM SUITE 2009 Build 3701 February 2010

CVSNT Workflow

Browse

Open CVS Suite Studio and it will automatically discover any servers on your local
network. It will discover servers located behind a router or on the other side of a VPN.

#5 Cvs Suite Studio 2.5.02.3226
File View Help

=li= ==

= Vistaxbd

B ftestrepo

B3 cvsdeps
E|_| cwent

B E - (o -

m

) Snaglt Catalog
Visual Studic 2005

4] WorkspaceViewer
_r& WorkspaceViewer

572KE
1.40 KB

Q Global Directery — ||B Desktop = | Mame Size | Type Date modified =
El_l CVSNT E|FE Documents mres File Folder 10/25/2008 11:
EI@ CVSNT m auth EAWorkspaceViewer 613KB VC++ Project 3/6/2007 6:33 4
-2 Smartloader | repo | stelafc 177KB C/C++ Header 5/26/200611:5

C++ Source
C/C++ Header

5/26/2006 11:5
5/26/2006 11:5

-4 CVSNT_2.0_19a WorkspaceViewer A Iﬂ'ﬂ‘."crk:pace'«'i EWEr 142 KB Resource Script 5/26/2006 11:5
w4 CVSNT_2.0_41_hotfix ! o res G_}ﬂ WorkspaceViewer\View 251 KB C++ Source 5/23/2006 3:08| 2
w9 CUSNT 2.0 51sp 78 Computer -r&ff_“”rce 2B9KE C/Cew Header 117117200514
-9 CVSN T_2 0 58sp 1—_':=.|J Floppy Disk Drive (A1) _f& \'..l'crkspace\u'le-,\.-'erv'leu.-' 3.2-.3 K-B C/C++ Header 11/11/20051:4
5% CVSNT 2.0 x : Local Dick (C3) Cjﬂ ViewDlg 1.06 KB C++ Source 11/10/2005 8:0
VENT BRA . S ¥ ViewDlg 509 bytes C/C++ Header 11/10/2005 8:0
[.] CTS(E‘J;_BPU—\NCH_PRE_EUUE i ;4;5[&9084;8&0146 ‘:ﬁ Statlink 328KE Ces Source 10/98/2005 15
P beoncclion W rertogs) Statlink 134 KB C/C++ Header 10/28/20051:5
B WorkspaceViewer J Program Files €4 MainFrm 247KB Co+ Sofyce 10/26/2005 8:4_
B MainFrm.cpp . Program Files (x36) [, MainFrm 153KB C/C++ Header 10/25/2005 8:4
] MainFrm.h) Users ¢ stdaf 997 bytes C++ Source 10/26/2005 84
[4] statlink.cpp aharrett R P T T A T CR R - Ans anE s
L[] Statlinkh -1 C Al]
n 3

Browse the server by pressing the + icon to open modules and directories. If you wish to
see branches and tags then select those options form the pulldown menu. The options in the
pulldown menu only affect modules and directories not already opened with the + icon.

Create a workspace

Create a workspace on your local PC drive by dragging a file or folder from the CVS Suite
Studio panel on the left to a directory on the right.

Import files and directories to the repository

Import files and directories from your local PC drive to the repository by dragging a folder
from the CV'S Suite Studio panel on the right to the server on the left. The directory on the
PC is unaffected by this operation. To create a “versioned workspace” on the client PC
follow the above section Create a Workspace.

Add a repository that is not already listed

If your repository is not listed automatically in the CVS Suite Studio then you can add it by
selectign File->new from the pulldown menu. Do not specify logon details in the name — if
a login is required CVS Suite Studio will prompt you.

%]

Mew server

Server |:pserver:cvs.u:vsnt.Drg:,l'usr,l'lucal,l'cvs

Drescripkion |cvs.cvsnt.u:urg

Cancel

o]

Workflow, Defect Tracking and Email © Copyright 2004 - 2010 March Hare Software Ltd

Page 46

CVS SUITE AND CM SUITE 2009 Build 3701 February 2010 CVSNT Workflow

Browse anonymously or specify a username and password

If a login is required to browse a repository then CVS Suite Studio will prompt you. If you
want to check files into the repository or create a workspace that will allow commit then you
would normally specify a user and password. If you are creating a work area for viewing
only, or viewing and update then the anonymous user will usually be sufficient:

Password Required

wsseryer ovs, ovsnk,org: 2401 fusrflocalficws

v &nonymaous Lu:ugif\}

sername |

Passwiord |

K | Cancel |

Operations on your workspace: Add, Commit etc

You can add files, commit (checkin) changes to your workspaces listed in the left hand
window by right clicking on the folder. The actions available are identical to the Tortoise
actions listed below.

Find out about other peoples changes

You can reserve a file for edit using CVSNT so that you are the only one who will have
access to it while you are using it. However there are times that you do not want to lock
people out — but need to know when changes are made. For example if one program
depends on another.

It is possible to request that CVS notify you when other users begin work on a file or finish
work on a file using the notify command.

Notify

For Notify to work your repository administrator must have already enabled e-mail
notification via the Notify configuration file using a tool such as CVSMailer.

To enable watches you should use the CVSNT command line.

Use the cvs watch on command to enable watches and then cvs watch add each file that you
want to be informed about.

Good comments

When using configuration management the kind of comments you enter and where you
enter them becomes important.

If you do not have a tool such as CVS to automatically track who has changed what then
you often add comments in the source code to indicate your initials and the change date.
You may want to continue this practice however CVS will now automatically track this

same information for you.

Workflow, Defect Tracking and Email © Copyright 2004 - 2010 March Hare Software Ltd Page 47

CVS SUITE AND CM SUITE 2009 Build 3701 February 2010 CVSNT Workflow

What is important are the comments you make when returning the file through version
control. If in six months time you are trying to determine why a change was made a
comment such as “fixes for September” is of little value — the date of the revision tells you
that.

Good comments include:
— Bug number(s)
— References to other people / sponsors
— References to other documentation
— A ssuccinct explanation of the purpose of the change

Here is an example of a good comment:

Bug 1234. Changes detailed in the functional spec h:\docs\fs23-1234.doc. Joe
explained that the customer component should always display a warning before
changes are written to the database. This is a first draft and probably needs some
work.

Here is a poor example of a comment:

Changes by Arthur. | made some changes to the WRITE trigger. Used askmess. A
part of the September work.

If you have a defect tracking system it is possible for the CVS repository administrator to
have your comments at checkin automatically added to the defect tracking database.

Bug fixing workflow with Promote

A typical request from QA managers is how to track what files have changed for each job or
bug. The following section describes an example of this:

— Make a change to source code using Eclipse and commit to repository.
— View changes via Bugzilla

— View changes via SQL Query on Audit database or Bugzilla database
— View changes via CVS Suite command line client

Make changes to source code using Eclipse and commit to repository

In a typical commercial software development environment a programmer is given a task
number, job number or bug number before beginning work. This bug number is then used
to track the changes from requirements gathering through to release:

Address m tkp 192, 168,49, 2fbugzillafshow

bug, coifid=5820

Buggzilla - Bug 5820 Fix this sample problem reported by customer Last iy

:

i

Bug List: (1 of 1) First Last Prev Vexd Show |ast search results {
Bug 5820 - Fix this sample problem reported by customer (edit) i
L

1

Status: ASSIGHNED (edit) Reported: 2010-02-21 09:00 CET b\,f.

Modified: 2010-02-22 01:41 CET (H\.

Product: | Eclipse Sample v i

CC List: [] add me to CC list 1

Component: User Sample 0 users (edit)

version: 1.0

Platform: | z)| Al v See Also: Add Bug URLs: 1
(
Importance:| pg v || enhancement ¥)
Assigned To: sample default assignee (edit) e
e, AP L IOV SR S q/"""\-..hn.‘\vmtﬁ L \,_A,r‘--\

Workflow, Defect Tracking and Email © Copyright 2004 - 2010 March Hare Software Ltd Page 48

CVS SUITE AND CM SUITE 2009 Build 3701 February 2010 CVSNT Workflow

The developer can use the synchronize view to visually compare the changes in the eclipse
workspace with the CVS Suite Server repository:

& Team Synchronizing - CVS [Workspace): /j2samplefsrc/fcustomer. java - Eclipse SDK

File Edit Mavigate Search Project Run ‘Window Help

| wil 0 R A R A S B | 50 Team Synchr... r
éDSynchr = @CVSR& =0 éucustomer.java)

VS (Workspace) = m Java Struckture Compare
=

R M =R % [= [J% Compilation Unit

N = E® custamer
=g D|i|’ <[5 @B main(String[T)
2= j2sample [sspi]
B sic
=8} (default package)

= &
Java Source Compare
[I% customer.java o P

8 & [[o | A 1

Laocal File {1.1)

B | Remote File (1.1)
= custower.ADD(1,2);

W res = customer.ADD(1,2):
|ut, println("Calculate 1+2 result is " + res): }—{stem out.println({"Calculate 1+42= " + res):

it (o) stem.exit (0)
c long ADD (double =, double b) {
a = mew Doubleia):
b = new Doubleib):
a.intValus () + Db.intValus(); P
.y e, . 8, el
W S Y By -'\"\.\, A o v P, XY . e

static long ADD (double a, double b))

ble Da = new Double(a):

ible Tbh = new Double(k):

'l.Lrn Da.intWValus (] + Dh.intValu=si);)
5 Y Py Y
oo i

N

peren v v vl PR WL, YU

When the developer is finished with the changes they can commit them back to the
repository and link them to the job / bug using the bug number:

& Commit Files

Commit
. . 1
& Team Synchronizing - j2Zsamplefsrc/customer. java - Eclipse S| Enter a comment For the commit DPI%EUD”- Ucvs
File Edit Source Refactor Mavigate Search Project Run Window
Nl : qtg; - Q- (E -4 g0~ 1! ; t:is resolves the problem bug 5820 by fixing the message displayed ko
. i) . i . the user
ED synchr 52 @ cvsre | © O|[[customer.java 2 !
V'S (Workspace) - /% CVE VERSION ID (’
k & ﬁ =) public class cust.cm‘
= public static vo,
long res -‘J
Camrrit Al O:ltgoing Changes.. | System. O“t'___ | <Choose a previously entered comment > v |
default packa r i
{default pacl g.e) System. ex Configure Comment Templates
[T% customer java , s
public static 1e Changes = k- |@|
Double Da d ERE jesample [sspi]
Dor.ble Eb =- =) @ st
< retnrn ﬁ'} |19 customer.java 1.1 - 1.1 (ASCIT -kl
ETJ Histary *2. Tasks B_x Problem/
= '[z_-‘gj' =j2sample [sspi]
(= bin é
(Fy =src =
5 .classpath 1.1 (ascCT = —
| e it ’ A=Y S 1 2 Finish | ’ Cancel
Rp— s .

Workflow, Defect Tracking and Email © Copyright 2004 - 2010 March Hare Software Ltd Page 49

CVS SUITE AND CM SUITE 2009 Build 3701 February 2010 CVSNT Workflow

View changes in Bugzilla
The QA manager can see at a glance in Bugzilla all the files modified by any bug:

Bug 5820

Summary: Fix this sample problem reported by customer
Product: Eclipse Sample Reporter: Arthur Barrett <arthur.barrett@march-hare.com:
Gomponent: User Sample Assignee: sample default assignee <sample@march-hare.com>
Status: ASSIGNED
Severity: enhancement
Priority: P35
Yersion: 1.0
Hardware: all
0s: All
Time tracking: Orig. Est. Actual Hours Hours Worked Hours Left %eComplete Gain
0.0 0.0 0.0 0.0 o 0.0
Deadline:
Attachments: jZsample/src/customer.java revision 1.2
Arthur Barrett 2010-02-21 09:00:36 CET Description

Fix this sample problem reported by customer

Arthur Barrett 2010-02-22 10:09:46 CET Comment 1
CVE8 Commit by user Administrator@march-hars.com
j2zample/src/customer. java 1.2 (+2,-2)

this resolves the problem bug 5820 by fixing the message displayed to the user.

The diffs can even be code reviewed directly in Bugzilla:

Bugzilla — Attachment #1725: j2Zsample/src/customer.java revision 1.2 for bug # 5820

Wiew | Details | Raw Unified
Collapse All | Expand All

[¢-) j2sample/src/customer.java (-2 / +2 lines) ‘

‘ Lines 1-9 Link Here ‘
1 /% CVS_VERSTON ID("B(#)§Id5™) */ 1 /% CVS_VERSTON_ID("@(#)$Id: customer.java,v 1.1 2010/02/22 04:01:06 BECCLIE
2 2
3 public class customer { 3 public class customer {
4 public static wold wain(3tring(] args) § 4 public static wold wain(3tring(] args) §
5 long res = customer.ADD(1,2); 5 long res = customer.ADD(1,2);
5 Systew.out.println(“Calculate l+2= " + res): 5 Systew.out.println(“Calculate 142 result is " + res):
7 7
g System.exitil); g System.exitil);
g ¥ g ¥

View changes via SQL Query on Audit database or Bugzilla database

An SQL client (eg: Microsoft Excel) can query the audit database or the Bugzilla database
to find all the files changed by a bug or all of the bugs affected by a file.

Promote to test or production by bug number

The CVS Suite tools all understand the bug number, and you can promote to any defined
promotion level using a bug number, eg: promoting to test:

Workflow, Defect Tracking and Email © Copyright 2004 - 2010 March Hare Software Ltd Page 50

CVS SUITE AND CM SUITE 2009 Build 3701 February 2010 CVSNT Workflow

Firstly the QA manager creates a disk area to perform the promote:
Drag the promotion level to a secure location:

CVS Suite Studio 2.8.01.3705

File Miew Help ’

S| Local Servers . v
= % local i M EI - #
=3 repo for edipse @ Deskiop j

) CwsROOT =5

I2) j1sample I3 blaht ¥
=) j2sample) crtest T testeny &
E classpath (1.1) 3 CYSROOT /
project (1.1]) Downloads .
=5 sre [5) Eclipse

cuskarnet, java 1

) eclproj f

[FileHashshel_src

¥

@ izlobal Directory) LabVIEW Data)

2 cvshT My Music '

) Other My Pickures (’
My Wideos

"‘ ‘wu-h.«--t".-ﬁ*m "—“‘-'“_\-\.'.\ Lt 'JH \."-- k‘*‘-‘““"“m"ﬁ'lﬂm'

Secondly use the right click promote menu

Right click the new promotion directory and choose the bug number to promote — there is
no need to know what files are affected by the bug — all files affected are promoted:

*" TortoiseCV5 - Promote |._||E|rg|
Merge changes between the following branches/tags/revisions:
Start; J_ h |
—
Bug [5820 2
Files:
Ly ECIpsE = N Update listz... | [] Scan subfolders
) eclprai [EJZSample_test. Tag... = =
: @LabVIEW Data The changes between the specified revisions/tags/branches wil
[h FileHashishel_src M namin ‘P Branch... be promated inta your current working sources. Enter the name
@ M_Expand ¥ Merge. .. of the branch to promate from in the first edit field.
[T LabYIEW Dat The repositary iz not altered until a cormit is performed.
@ My Music Explore P Confirm the files to merge/promate.
g My P?ctures gpenh x Rename... Hint: Right-click to select/deselect.
My Wideos =areh. . s Show items in subfolders
(C3 My virkual Mal Shari d Securit Release... .
& n e ﬂchecknut... [ERRTYC.Documents S e Promote
[Snaglt Catale @ CYS Update command [0 £l stehoustomer java Mo
=) test VS Edit O %-D'UIEC‘ No
I impart | @ CvS Commit... ¥ Preferences. .. [Es classpath Mo
I8 MyHelloF @ cys add Conterts. . p— - @
1) test = == =
UpdakegBue..-;
__f_-.m_@; ;ﬁ = [Ok] [Cancel

Workflow, Defect Tracking and Email © Copyright 2004 - 2010 March Hare Software Ltd Page 51

CVS SUITE AND CM SUITE 2009 Build 3701 February 2010 CVSNT Workflow

Lastly use the right click commit menu

Right click the new promotion directory and choose commit — you can use the same bug
number, or a new bug number (eg: a new bug that combines several other bug fixes into a
release or service pack):

" TortoiseCVS - Commit |Z||§|E|

Folder: C:\Documents and Settingz Administratoryby Documentzh2zample. . varch

Comment Histary:

v
Bug Humber; [JUseBug []Mark Bug
Comment: [Jwirap lines
finalize the promote to test
Filename Filetype Format Statug Bug

cuztomer java Java Language Source file TextAASCH Modified

To zee the changes pou hawve made, double or right click on the files above.

[1]] l Cancel l [Refresh]

2 filefs]

You can use the revision graph feature to visually confirm the promotion:

** TortoiseCVS - Revision Graph for C:\Document... |Z||E|E|

Revizion: 1.2

Date: 2240242010 03.09
Author: BBCCLIEMT “WAdminiztratar
Bug Humber:

5820

Comment:

thiz rezolves the problem bug 5820 [[1] by fiking the meszage displayed to the
uger,

[ok | | setLimis.

Workflow, Defect Tracking and Email © Copyright 2004 - 2010 March Hare Software Ltd Page 52

CVS SUITE AND CM SUITE 2009 Build 3701 February 2010 Advanced client functions

Advanced client functions

This section is intended to give the administrators a quick overview as to how to use CVS
clients to perform general administrative functions such as creating branches and doing
promotes (merges).

It is recommended that administrators be familiar with using the command line tool for
performing administrative functions.

Creating branches

To create a branch use the cvs tag command. Branches are designed to allow development
on the same files by teams with different objectives to occur at the same time. The most
common reason to create a branch will be in a software project when version 1 of the
product is almost complete and version 2 is beginning work.

At this stage the development of version 2 will continue on the trunk and a branch will be
created for finishing version 1. The test and release promotion levels will be branched of
the version 1 development branch.

There are two ways to create a branch:

— With a sandbox of the “from” files (eg: creating a branch “from” the trunk you begin
with a sandbox of the trunk. Creating a branch does not alter the working directory
ad sandbox in any way.

— Without a sandbox. In this case the command takes two parameters for the “from”
and new branch names. To ensure that the files you expect to be tagged are the ones
that are tagged it is necessary to ensure that noone commits any changes to the
repository. EgQ: you decide to create devl branch and between you making the
decision and running the rtag command someone commits some work which breaks
the build.

Creating a branch from a sandbox
Use the following command on the sandbox:

cvs tag —b branch-name

after this command the local sandbox will not be altered in any way. If you want to make
changes to this branch you will need to check out the newly created branch using the
checkout command.

Creating a branch without a sandbox

You can create a branch without using a sandbox, however if another person commits
changes while the branch is being created then it will not be immediately clear which
versions of the files received the branch. This is because branch creation and commits are
not atomic. This problem does not apply to checkouts (because a checkout is atomic).

To create a branch without a sandbox use:
cvs rtag —b branch-name

Workflow, Defect Tracking and Email © Copyright 2004 - 2010 March Hare Software Ltd Page 53

CVS SUITE AND CM SUITE 2009 Build 3701 February 2010 Advanced client functions

Creating Promotion Levels

CVS uses branches to implement a promotion level. The difference is simply how you use
them. Because the promotion level is usually only accessed by a QA manager there are
typically two additional steps to setting up a promotion level once the branch is created:

Change the default access so that developers cannot merge changes into the promotion level
or commit changes onto it.

Change the default locking more to unreserved. This can be done using the cvs update
command on a checked out sandbox of the new promotion level:

cvs update -k-x
cvs commit

Promoting

CVS uses branches to implement a promotion level. The difference is simply how you use
them. There are two ways to promote a revision from the Trunk (or a branch) to a
promotion level: Move and Merge. With the Move method you will not keep a history of
the previous versions also moved to that promotion level, with the merge method CVSNT
will keep track of the history using Mergepoints and these will be viewable using
CVSGraph in TortoiseCVS or WinCVS.

Move Method

On the Trunk or branch you can push a version to a promotion branch (promote) using the
CVS tag command with the options -F -B -b tag.

This is unsafe to do with a normal branch because you will lose the changes that have
occurred on the branch between it’s creation and the promotion.

Merge Method

You will usually merge changes onto a promotion level by using bug identifiers. On a
promotion branch versions are moved onto the promotion branch (promoted) using the CVS
update command with the options -B bug —j 1 —e newbug. The newbug is a bug or task
identifier for the tasks of promoting the bug to the new level.

Merging-in Branches

You can merge changes made on a branch into your working copy by giving the CVS
command update with the -j branchname flag. With one -j branchname option it merges the
changes made between the point where the branch was last merged and newest revision on
that branch (into your working copy).

If you wish to revert to the older CVS behaviour of merging from the point the branch
forked, specify the -b option.

If you are updating from an Unix CVS server of older CVSNT server that doesn't support
merge points, then the merge will always be done from the branch point.

The -j stands for "join™.

Workflow, Defect Tracking and Email © Copyright 2004 - 2010 March Hare Software Ltd Page 54

CVS SUITE AND CM SUITE 2009 Build 3701 February 2010 Advanced client functions

An example
Consider this revision tree:
B —— + B —— + R —— + B — +
1 1.1 1———=1 1.2 1ol 1.3 11 1.4 1 <- The main trunk
B + B + R T + T +
!
1
1 o —_—— + o —_—— +
Branch R1fix -> +-—--1 1.2.2.1 1——-1 1.2.2.2 1
o - + o - +

The branch 1.2.2 has been given the tag (symbolic name) R1fix. The following example
assumes that the module mod contains only one file, m.c.

$ cvs checkout mod Retrieve the latest revision, 1.4

Merge all changes made on the branch,

#
$ cvs update -j Rifix m.c #
1.e. the changes between revision 1.2
#
#

and 1.2.2.2, into your working copy
of the fTile.

$ cvs commit -m "Included R1fix" # Create revision 1.5.

A conflict can result from a merge operation. If that happens, you should resolve it before
committing the new revision.

If your source files contain keywords, you might be getting more conflicts than strictly
necessary.

The CVS command checkout also supports the -j branchname flag. The same effect as
above could be achieved with this:

$ cvs checkout -j Rifix mod

$ cvs commit -m "Included R1fix"

It should be noted that the CVS command update with -j tagname will also work but may
not produce the desired result.

Merging-in Branches using MergePoint

What is a mergepoint, and how does one use it?

Mergepoints help CVS find the common ancestor when trying to diff a file, which greatly
reduces the effort required to merge in branches. It is automatically saved by CVS when
you merge changes from one branch to another. Just make sure you commit after merging
(before performing any other merges) and CVS will save the mergepoint field with the
update.

Note that mergepoints are specific to CVSNT, and require that CVSNT is running on both
client and server.

When you merge back and forth from dev branch to HEAD, it is a very simple operation--
just specify the branch to merge from, and CVS takes care of the rest. If you read about
merging in the regular CVS documentation, it looks like a big effort to tag before, merge,
commit, retag... lots of tagging and remembering those tag names.

With mergepoint, merging is done simply by using:

Workflow, Defect Tracking and Email © Copyright 2004 - 2010 March Hare Software Ltd Page 55

CVS SUITE AND CM SUITE 2009 Build 3701 February 2010 Advanced client functions

cvs update -j branch-tag

Then you can correct any conflicts, test your integration, and commit without worrying
about a lot of tagging operations.

You can see the mergepoint records in the output of the log command (look at rev 1.8, the
last field before the comment):

Command Prompt

cvs log test.c

That mergepoint is in the record from the commit after | performed the merge.

Workflow, Defect Tracking and Email © Copyright 2004 - 2010 March Hare Software Ltd Page 56

CVS SUITE AND CM SUITE 2009 Build 3701 February 2010 Advanced client functions

Workflow, Defect Tracking and Email © Copyright 2004 - 2010 March Hare Software Ltd Page 57

	Legal Notices
	Table of Contents
	Part I – Theory
	Promotion model
	Example 1
	Example 2

	What are Branches, Magic Branches and Vendor Branches
	When are Branches, Magic Branches and Vendor Branches Used
	Example 1
	Example 2
	Example 3
	Example 4
	Example 5

	What are the benefits to using Branches, Magic Branches and Vendor Branches
	Making the same changes twice
	Ensure security

	Technical limitations on Branches – no deleting or renaming
	CM Suite
	Choose branch names carefully – they may not be deleted or changed

	What is different between a Branch and a Magic Branch
	Introduction to CVS Meta Data and Deltas
	What creating a branch really does

	Promotion model versus Branches
	Highly concurrent / Highly available vs. Structure and Control
	A Branching Intensive Development Model
	A promotion intensive “secure” model

	Mixed model
	Mixing up the development models

	Patch management – getting fixes to customers
	Service Packs
	Patches

	File and Directory Architecture
	File Types
	File Naming
	Include Files and Common Files
	Size and contents and the relationship to project activity

	Notification of what is committed / added
	What other choices do you need to make about CM
	Management Objectives
	Company Culture
	Reserved / Unreserved – Centralised / De-Centralised
	Reserved / Unreserved
	Centralised / De-Centralised
	Reserved Centralised
	Reserved Distributed
	Unreserved Centralised
	Unreserved Distributed
	Reserved Centralised / Reserved Distributed Mix

	Communication versus Insulation
	Communication
	Insulation

	Sources / Objects

	Part II – Practical
	Installing server integration
	Integration with Email
	Default Behaviour
	Configure the commit support files
	commit_email, tag_email and notify_email
	template and checkoutlist
	users and checkoutlist

	Write the template
	Configure the server

	Integration with Bugzilla, Mantis or Jira Defect Tracking
	Supported defect tracking systems and versions
	Bugzilla
	Mantis
	Jira

	How the Bugzilla Integration Works
	Communications
	Default Behaviour
	Installing Bugzilla on Windows
	Configuring Integration on Windows
	Configuring on Unix
	Installation of Integration
	Testing of Integration (command line)
	Testing of Integration (CVS Suite Tortoise)

	Creating Branches
	Creating Promotion Levels
	Promoting
	Merging-in Branches
	Bug ID's (User Defined Change Sets)
	Access Control Lists
	Chacl command
	Access Roles
	Access by Groups
	Default ACL’s
	Branch ACL’s

	Commit ID's
	Release tags
	tag=tag
	Branch alias
	Branch point in time alias

	Implementing Methodologies
	Reserved / Unreserved
	Reserved
	All reserved modes use watches
	Reserved for Communication Only
	Reserved Co-operatively
	Reserved Exclusive

	Distributed / Centralised
	Location
	All Files and Directories

	Updating Centralised Copy on Windows Server
	Updating Centralised Copy on Unix, Linux or Mac OS X Server

	Store Object Code
	Keeping object code, from the developer
	Keeping object code, from the build environment
	Ignoring object code

	Promotion Model
	Insulation and Communication
	Insulation
	Communication

	Part III – Client
	Setting up CVS Suite Studio Client on Windows
	Set and Manage ACL’s

	CVSNT Workflow
	Workflow Definition
	Version Numbers
	Bug ID's
	Edit
	Unedit
	Update (Merge)
	Commit

	Creating Branches
	Creating Sandboxes
	Implementing Methodologies
	Reserved / Unreserved
	Reserved
	All reserved modes use watches
	Reserved for Communication Only
	Reserved Co-operatively
	Reserved Exclusive

	Distributed / Centralised
	Store Object Code
	Keeping object code, from the build environment

	Promotion Model
	Insulation and Communication
	Insulation
	Communication

	Unreserved Distributed Workflow
	CVS Suite Studio
	Browse
	Create a workspace
	Import files and directories to the repository
	Add a repository that is not already listed
	Browse anonymously or specify a username and password
	Operations on your workspace: Add, Commit etc

	Find out about other peoples changes
	Notify

	Good comments
	Bug fixing workflow with Promote
	Make changes to source code using Eclipse and commit to repository
	View changes in Bugzilla
	View changes via SQL Query on Audit database or Bugzilla database

	Promote to test or production by bug number
	Firstly the QA manager creates a disk area to perform the promote:
	Secondly use the right click promote menu
	Lastly use the right click commit menu

	Advanced client functions
	Creating branches
	Creating a branch from a sandbox
	Creating a branch without a sandbox

	Creating Promotion Levels
	Promoting
	Move Method
	Merge Method

	Merging-in Branches
	An example

	Merging-in Branches using MergePoint
	What is a mergepoint, and how does one use it?

