
So You Want High Performance

Author: Peter Lin

Reviewers:
Tim Funk, Mike Curwen,
Remy Maucherat

Date: 9/24/2003

Revision: 1.0

Table of Contents
So You Want High Performance.. 4
What to Expect.. 4
An Address book Webapp.. 4

Installing the War file..5

Features..6

How it performs and tuning.. 6
Enough Jibber Jabber Already, Show me the Data...7

Graph 1: Simple 100 client vs. servers...8

Graph 2: Simple 100 DOM vs. SAX...9

Graph 3: Simple and medium model with 100 and 500 entries...10

Graph 4: Data models with 100 and 500 entries with “-server -Xms128 -Xmx384”................. 11

Graph 5: Simple model 100 entries 400mhz UltraSparc vs. AMD XP 2Ghz.............................. 12

Graph 6: Simple Model 100 entries: xmlservlet vs. xslstream.jsp on Linux...............................13

Graph 7: Simple model 100 entries: cached vs. non cached on X1..14

Graph 8: Simple model 100 entries: CPU speed vs. Sarvega XPE...15

Graph 9: Medium model 100 entries: CPU vs. Sarvega...15

Graph 10: Simple model: XML vs. JDBC req/sec...16

Graph 11: Simple model: pool vs. non pooling req/sec...17

Graph 12: Simple model: pool vs. non pooling response time..18

Graph 13: Simple model 100 entries: SAX vs. JDBC Pooling..18

Graph 14: Simple Model 100 & 500: Sun vs. IBM VM...19

Graph 15: extended options for Sun VM..20

Graph 16: Gzip compression as Page Size Increases..21

Myths about Performance and Scalability.. 21
Bandwidth is Unlimited...22

T1 – 128kbits to 1.5mbit...22

T3 – 3mbit to 45mbit...22

DSL – 128kbits to 10mbits..22

Frame Relay – 56kbits to 1.5mbits...22

OC1 – up to 51mbits...23

OC3 – up to 155mbits...23

Any ISP Will Do..24

Tier 1: Backbone Provider...24

Tier 2: Regional..24

Tier 3: Local..24

Scaling Horizontally Is Preferable To Vertical..25

You Need The Fastest Web Server To Get The Best Performance...................................26

A Website Doesn't Need Much Maintenance...27

Development Process Is The Problem Not The Server...27

Performance Strategies.. 28
Monitor the Servers..29

Log Application Performance...30

Generate Nightly Statistics...31

Document Performance Boundaries..31

Make Sure Everyone Reads The Documents..31

Write A Formal Plan For Disaster Recovery..31

Run Practice Drills..31

Assign People...32

Staging Environment..32

Conclusion... 32

So You Want High Performance

Who doesn't? With clock work regularity, questions about performance appear on
tomcat-user mailing list at least once a month. Sometimes more frequently, if a
commercial server publishes new benchmarks claiming they out perform Tomcat. This
article is my attempt to answer some of these questions and try to provide some useful
tips, and tricks. Remy Maucherat and I co-wrote Tomcat Performance Handbook, but
as many have heard Wrox went out of business. For those who don't know, Remy is a
consultant with JBoss and the release manager for Tomcat 4 and 5. Originally, I wrote
a couple articles to donate to the community, but before I completed them, Wrox made
a book offer. Nine months later the book is still non-existent, but I still have an itch to
scratch.

For this article, I ran a couple new benchmarks and use some data from the book. This
article is a complete rewrite and does not plagiarize from the book. Plus, this way I can
be more informal and add a bunch of jokes. Any and all errors are my mistake, so don't
go asking Remy why certain things are wrong. If you find spelling, grammatical or
factual errors, please email me at woolfel@yahoo.com and I'll fix them.

What to Expect

There's a thousand ways to talk about performance, but I've chosen to tackle it in the
following order:

1. An address book webapp as an example
2. How it performs and tuning
3. Myths about performance and scalability
4. Development process is the problem not the server
5. Performance strategies

Many of the comments from the book reviewers wanted to see the results sooner than
later. In my mind, any conversation about performance has to take into consideration
the development process and functional requirements, but people find that boring.
Ironically, that's where most projects fail. Many projects go through the development
cycle without formal requirement documents, which leads to total chaos. I'm sure
everyone is dying to learn how to write functional and performance requirements, but
you'll have to wait. I know it's tough, since I've whet your appetite.

An Address book Webapp

I wrote this quick webapp to demonstrate the relationship between architecture and
performance. It's not meant to be complete or usable, but address books are common
features on many commercial sites. The webapp uses XML and JSTL so that readers
don't have to install a database. Yeah, I know there are tons of free database on the
Internet, but do you really want to spend 5 hours installing a database so you can run a
webapp. Before you start screaming “XML has horrible performance! Why in the world
did you choose it?” There's a good reason. XML and XML derived protocols are

becoming more popular and prevalent. For better or worse, applications that use XML
will continue to increase. Binary protocols are generally faster than XML. For example,
JDBC is faster than XMLSql drivers. In some cases, researchers have demonstrated
that XML based protocols can match and beat RMI in terms of speed. Depending on
which benchmarks you look at, binary protocols tend to perform 10-100 times better
than XML. Just in case you want to see actual benchmarks, here's a list of URL's.

http://www.cs.fsu.edu/~engelen/soap.html
http://www2003.org/cdrom/papers/alternate/P872/p872-kohlhoff.html
http://www.extreme.indiana.edu/xgws/papers/soap-hpdc2002/soap-hpdc2002.pdf
http://xmlbench.sourceforge.net/index.php?page=results.php
http://easynews.dl.sourceforge.net/sourceforge/xmlbench/features.pdf
http://www.sosnoski.com/opensrc/xmlbench
http://www.ingorammer.com/Articles/REMOTINGVS.ASP.NETWEBSERV.html
http://riboe.homeip.net/articles/ws
http://www-staff.it.uts.edu.au/~rsteele/irl/wsrdg/kohlhoff.pdf

The address-book webapp uses a combination of servlets and JSP's with three
different data models to illustrate the impact of functional requirements on the
architecture. The architecture ultimately defines the performance limits of your webapp.

Installing the War file

Download the war file and put it in your tomcat/webapps/ directory. By default Tomcat
will auto deploy the application on startup. You can manually install the webapp by
extracting the files to the webapps directory with “jar -xvf addrbook.war”. The webapp is
organized into three directories:

webapps
 |
 | --addrbook

| -- jsp files
| -- data
 | -- xml data
| -- random
 | -- xml data used for random selection
| -- web-inf
 | -- JSTL, servlets and other stuff

If you look at the JSP files, you will notice the files are named simple_100.jsp,
simple_500.jsp and so on. The basic idea was to simulate a flat data model versus a
normalized data model.

Simple – equivalent to flat file or single database table
Medium – semi-normalized model
Complex – normalized model

Features

The site only has a few features:

1. Display all the addresses in the XML file
2. Search for an address
3. Randomly select a data file and display the contents
4. Use SAX with XSL/XSLT to transform the data to HTML
5. Use DOM with JSTL to transform the data to HTML
6. A modified version of the stock snoop.jsp page for testing GZip

Feel free to modify the webapp as you wish. If you decide to use it for a real site, I take
no responsibility and provide no warranty. It's not appropriate for real use and is only
for benchmarking purposes.

How it performs and tuning

I used a combination of Apache Bench and Jakarta Jmeter to load test the webapp on
my servers. Being the geek that I am, I have a couple of development servers. Each
test ran for a minimum of 1000 requests and each run was performed several times.
The Jmeter test plans are included in the resource package. The systems used to
perform the benchmarks are listed below.

 System 1
Sun X1 400mhz UltraSparcIIe
768Mb ECC Reg PC 133 SDRam
Tomcat 4.1.19
Sun Jdk1.4.1_01
JMeter 1.7
Apache 2.0 ab

 System 2
Red Hat 8.0 server
AMD XP 2ghz
1Gb DDR Ram
Tomcat 4.1.19
Tomcat 5.0.9
Sun Jdk1.4.1_01
IBM Jdk1.4
JMeter 1.7
Apache 1.3 ab

 System 3
Windows XP Pro
Sony Vaio FX310
900mhz Celeron
256Mb Ram
JMeter 1.8
Sun Jdk1.4.1_01

 System 4
Home built System

450mhz P3
512Mb PC100 SDRam
JMeter 1.8
Oracle8i release 2
Sun Jdk1.4.1_01

 System 5
Home built System
200mhz Pentium Pro
256Mb SDRam
Oracle8i

I chose to use this setup, because that' the hardware I have. If you want to know how
the webapp would perform on a Sun E450 or E6800, try it and send me the results. If
anyone wants to donate a Sun E4500, I'm always willing to adopt a server. The network
setup consists of 2 linksys 10/100 switches. Both the X1 and Linux box have two
10/100mb Ethernet cards. All network cables are CAT5, except for a cross over cable
between my router and one of the switches. The network traffic was strictly on the
switches, so the router doesn't have any impact. All of the raw data generated by me
are available, so feel free to scrutinize it. I didn't do an exhaustive analysis of the data,
but feel free to do it yourself. In all cases, Apache Bench and Jmeter did not run on the
server machine. When the X1 is the server, the linux system was running AB/Jmeter.
When the linux box is the server, the X1 was running AB/Jmeter. I must acknowledge
Sarvega corporation for their assistance. They were kind enough to run some
benchmarks using their XPE XML accelerator. Sarvega has a new product out, which
out performs XPE. The results for XPE in graphs 8 and 9 do not represent the fastest
performance for hard accelerators. If anything, the performance gains will continue to
improve. You can find out more about the Sarvega XPE accelerator at
http://www.sarvega.com/.

Enough Jibber Jabber Already, Show me the Data

This first graph shows the performance difference between client and server mode. For
those not familiar with server and client mode, the default mode is client. To run tomcat
with server mode, you have to modify catalina.bat/catalina.sh to include JAVA_OPTS.

JAVA_OPTS=”-server”
JAVA_OPTS=”-server -Xms128m -Xmx384m”

If you prefer not to set the memory settings in catalina.bat/catalina.sh, you can set the
environment instead. The servers were warmed up before the real test, so page
compilation is not an issue.

Concurrent req -client -server -server -Xms128m -Xmx384m
1 5.31 5.96 8.5
2 5.07 6.73 8.25
3 5.05 6.81 8.63
4 5.06 6.54 8.15
5 5.03 6.54 8.28

Graph 1: Simple 100 client vs. servers

Wait a minute, are you serious? Unfortunately, the numbers in graph 1 are correct,
since I ran the tests over a dozen times. If you happen to skip the first 3 pages, XML is
heavy weight and doesn't come free. Parsing XML consumes copious amounts of CPU
and memory, so it's kinda like a hungry hungry hippo for those who remember the
game.

1 2 3 4 5
5.00
5.25
5.50
5.75
6.00
6.25
6.50
6.75
7.00
7.25
7.50
7.75
8.00
8.25
8.50
8.75

Simple 100: client vs. server

-client -server -server -Xms128m
-Xmx384m

Concurrent req

R
eq

/s
ec

Graph 2: Simple 100 DOM vs. SAX

Graph 2 compares SAX to DOM with client, server and optimized server settings. Using
SAX helps client mode beat server mode, but optimized server mode still beats SAX.
An important consideration between using DOM and SAX is memory and CPU
utilization. In all tests comparing DOM to SAX, the CPU and memory usage was higher
for DOM. Excessive CPU and memory utilization could impact other processes on the
system, so use DOM carefully.

1 2 3 4 5
5

5.5

6

6.5

7

7.5

8

8.5

9
8.5

8.25

8.63

8.15
8.28

7.23

6.88 6.92 7.02 6.99

Simple Model 100 Addresses: DOM vs Sax

-client DOM -server DOM -server opt. DOM -client SAX

Concurrent req

R
eq

ue
st

/s
ec

Concurrent req -client DOM -server DOM -server opt. DOM -client SAX
1 5.31 5.96 8.5 7.23
2 5.07 6.73 8.25 6.88
3 5.05 6.81 8.63 6.92
4 5.06 6.54 8.15 7.02
5 5.03 6.54 8.28 6.99

Graph 3: Simple and medium model with 100 and 500 entries

When the data is more than 100K, the throughput drops dramatically. The take home
from this graph is limit the size of XML data. Performance intensive applications that
load a lot of data should not use XML, unless you want to make sure the application is
slow. In general, I would limit XML data to 2K or less for performance sensitive
applications. Applications that have moderate load will want to limit XML data to 20K.

1 2 3 4 5
0

0.5
1

1.5
2

2.5
3

3.5
4

4.5
5

5.5

Model + size vs. Request/sec

Simple 100 25K Simple 500 126K Medium 100 58K Medium 500 290K

Concurrent

R
eq

ue
st

/s
ec

Concurrent Simple 100 25K Simple 500 126K Medium 100 58K Medium 500 290K
1 5.31 1.12 2.53 0.52
2 5.07 1.02 2.49 0.49
3 5.05 1.06 2.48 0.46
4 5.06 1.1 2.45 0.42
5 5.03 1.14 2.43 0.34

Graph 4: Data models with 100 and 500 entries with “-server -Xms128 -Xmx384”

Although running Tomcat with optimized heap increases the throughput from 5 to 8
requests per second, it's nothing to shout about. Since I have a Linux AMD box with
2ghz CPU and 1Gb of RAM, we can compare the throughput on a faster CPU.

1 2 3 4 5
0

1

2

3

4

5

6

7

8

9

Data model size vs. Request/sec w/VM optimization

Simple 100 Simple 500 Medium 100 Medium 500

Concurrent

R
eq

ue
st

/s
ec

Concurrent Simple 100 Simple 500 Medium 100 Medium 500
1 8.5 1.96 3.08 0.64
2 8.25 1.86 3.04 0.6
3 8.63 1.81 3.02 0.59
4 8.15 1.76 3.03 0.59
5 8.28 1.67 2.9 0.58

Concurrent 2ghz 400mhz
1 25 5.31
2 25.06 5.07
3 25.19 5.05
4 25.55 5.06
5 25.37 5.03

Graph 5: Simple model 100 entries 400mhz UltraSparc vs. AMD XP 2Ghz

Well the numbers speak for themselves. Let's put this in perspective. The AMD box
cost me approximately 850.00 in 2002 and the X1 cost me 1150.00 in 2001. Both
systems are 1U rackmounts, but the X1 runs much cooler. In fact, I had to drill some
holes in the top of the AMD system, because the heat was causing it to lockup.
Obviously, the heat isn't a great issue and can easily be solved with a 2U rackmount
case and a couple more fans. In fact, a 2U configuration will probably be cheaper than
a 1U depending on where you buy it from. Based on these numbers, increasing the
CPU from 400Mhz to 2Ghz roughly quadruples the throughput per second. I did quick
comparison between 400Mhz UltraSparc and 450Mhz Pentium III and the throughput
was roughly equal. This is expected since XML parsing is CPU and memory intensive.

The next graph compares a servlet and JSP page that uses SAX with XSLT. What was
surprising to me is the JSP was faster than the servlet. At first I thought this was a fluke
and that something was wrong. To make sure this wasn't some bizzare anomaly, I
rebooted both systems and ran the tests clean a half dozen times. When I made the X1
the server and the Linux box the client, I saw the same performance delta. I have no
conclusive evidence for this behavior, but it might be the JSP mapper is more efficient
than the servlet mapper. I had some discussions with Remy about this observation, but
I haven't researched this any further.

1 2 3 4 5
4.00

6.50

9.00

11.50

14.00

16.50

19.00

21.50

24.00

26.50

Simple model 100 entries: 400mhz USparcIIe vs AMD 2ghz XP

2ghz 400mhz

Concurrent

re
qu

es
t/s

ec

Concurrent Xmlservlet Xslstream
1 25.4 28.36
2 23.66 25.03
3 22.28 23.81
4 21.51 22.8
5 20.78 22.66

Graph 6: Simple Model 100 entries: xmlservlet vs. xslstream.jsp on Linux

So far the Linux box out performs the X1, so lets compare what happens if we cache
the XML on the X1. Sadly, even with caching, server mode and increased heap, the
Linux box is still faster (25 req/sec). In this particular case, scaling up with faster
hardware is the better solution. Especially when you consider how cheap a 2Ghz
system is today. Of course this isn't a solution for all cases. If you have 2000 servers,
using AMD or Intel will generate so much heat, it will cost you more in the long run.
After a couple of months, any saving you got from cheaper hardware will be lost in
cooling and power. What's worse is that cost won't go away and stays with you for the
life time of the setup. In fact, Google made a statement to that effect when they were
asked “Does Google plan to upgrade to Pentium 4 systems?” The last time I checked,
Google was using 4000 servers. Just think about how many kwH Google consumes
each day. If you had to rent that much rack space, it would cost you 20-100 thousand
dollars a month. The last time I researched co-location prices for 20 servers, it came
out to 3 full racks at 5000.00 a month. A couple of the servers were 6U and the RAID
boxes took up half a rack.

1 2 3 4 5
20.50
21.00
21.50
22.00
22.50
23.00
23.50
24.00
24.50
25.00
25.50
26.00
26.50
27.00
27.50
28.00
28.50

Simple model 100 entries: xmlservlet vs xslstream on Linux

Xmlservlet Xslstream

Concurrent

re
qu

es
t/s

ec

Concurrent req -client cached -server -server -Xms128 -Xmx384 -server cached
1 17.75 5.96 8.5 19.8
2 18.47 6.73 8.25 19.64
3 18.47 6.81 8.63 19.4
4 18.41 6.54 8.15 19.51
5 18.44 6.54 8.28 19.46

Graph 7: Simple model 100 entries: cached vs. non cached on X1

By now, you should be thoroughly convinced that XML performance sucks. But there's
hope. A couple companies have begun selling XML accelerators and it does work. If we
take a trip back to 1996, we can see a similar pattern. Back when I was in college,
Amazon.com opened it's doors on the Internet. A year after that, SSL/TLS became an
industry standard. As E-Commerce grew, many sites had a hard time stabilizing their
servers, because encryption is CPU intensive. Companies like IBM, Rainbow
Technologies and nCipher began selling SSL enabled Ethernet cards and routers. The
largest sites rapidly deployed hardware accelerators to improve their performance and
it worked. Not only did the response time improve, but so did reliability.

XML is going through the same growing pains. Even if some one writes a better stream
parser, it's not going to beat a hardware solution. So how much faster are hardware
accelerators?

1 2 3 4 5

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

Simple model 100 entries: Cached vs Not cached on X1

-client cached -server -server -Xms128
-Xmx384

-server cached

Concurrent req

R
eq

ue
st

/s
ec

Users Sarvega Usparc II e 400 AMDXP 2ghz
1 7.12 117.64 40
2 10.38 242.38 79.82
3 15.84 347.55 119.08
4 21.47 490.73 156.58
5 19.85 604.22 197.08

Graph 8: Simple model 100 entries: CPU speed vs. Sarvega XPE

For 25K of XML, Sarvega's XPE blows the software solution away. As the graph
shows, performance scales linearly so, I didn't run the tests with 10 or 100 concurrent
requests. As the number of concurrent requests increases, the performance delta will
grow.

Graph 9: Medium model 100 entries: CPU vs. Sarvega

1 2 3 4 5
0

50
100
150
200
250
300
350
400
450
500
550
600
650

Simple model 100 entries: CPU speed vs Sarvega

Sarvega Usparc II e 400 AMDXP 2ghz

Concurrent requests

m
ill

is
ec

on
ds

1 2 3 4 5
0

200

400

600

800

1000

1200

1400

1600

1800

Medium model 100 entries: CPU vs. Sarvega

Sarvega Usparc II e 400 AMDXP 2ghz

concurrent requests

m
ill

is
ec

on
ds

With 58K of XML, the performance gain is greater as expected. We could go on and on
increasing the size of the data to 1Mb, but it's obvious. Hardware accelerators provide
concrete performance improvement. Some people will argue servers are cheap, so
don't bother with hardware accelerators. I'll address this myth later in the article. For
now, I'll just say that scaling horizontally is not as easy as it seems.

Ok, so XML sucks. Lets dump it for something more efficient, like JDBC and store the
addresses in a database. At first, it might be surprising to see that JDBC is slower than
XML. This is because of the high cost of making a database connection. Regardless of
the database server, creating a connection and authentication takes 50-150
milliseconds.

Graph 10: Simple model: XML vs. JDBC req/sec

With connection pooling, the throughput easily beats XML and jumps to 100 requests
per second. At 10 concurrent requests, we see a dramatic drop-off in throughput. This
is primarily because Oracle is running on a 450mhz system with 512Mb of RAM and no

1 2 3 4 5
2.5

5

7.5

10

12.5

15

17.5

20

22.5

25

27.5

Simple model: XML vs. JDBC req/sec

Jdbc 10 rows XML 100 Xml 500

concurrent request

re
qu

es
t/s

ec
on

d

Users Sarvega Usparc II e 400 AMDXP 2ghz
1 10.21 325.13 112.73
2 13.16 656.88 232
3 19.54 993.53 365.21
4 26.61 1321.39 542.15
5 21.77 1726.48 731.45

1 2 3 4 5
Jdbc 10 rows 8.79 10.02 10.14 10.2 10.06
XML 100 25 25.06 25.19 25.55 25.37
Xml 500 3.87 4.04 4.06 4.15 3.79

tuning. The database manager I wrote for the test application is simplistic and only tries
to get a new connection once. Ideally, Oracle should be tuned to meet the needs of the
peak traffic and the database manager should try to get a connection 3 times before
throwing an exception. Another option is to make the database manager asynchronous,
so that it can send the queries to Oracle once it's ready.

In most cases, tuning Oracle for high concurrency will be sufficient for small and
medium sites. Oracle was chosen, because I that is the database I am most familiar
with. Regardless of the database you use, it should be tuned to meet the needs of your
website.

Graph 11: Simple model: pool vs. non pooling req/sec

0 5 10 15 20
0

10
20
30
40
50
60
70
80
90

100
110
120
130
140

Simple model: pooling vs non pooling req/sec

7k req/sec 14K req/sec Pool req/sec

concurrent request

re
qu

es
t/s

ec
on

d

1 2 3 4 5 10 15 20
7K resp. time 113.81 199.62 295.85 392.17 497.14 986.96 1488.39 1998.4
14K resp time 117.33 188.44 284.56 379.18 474.11 945.2 1416.75 1882.68
14K pool resp time 21.03 26.1 30.85 37.52 44.83 76.26 302.58 514.76

Graph 12: Simple model: pool vs. non pooling response time

On a properly tuned database with connection pooling support, the response time
should be linear until CPU utilization exceeds 85-90% or the system starts to hit the
disk cache.

Graph 13: Simple model 100 entries: SAX vs. JDBC Pooling

0 5 10 15 20
0

200

400

600

800

1000

1200

1400

1600

1800

2000

Simple model: pool vs non pooling response time

7K resp. time 14K resp time 14K pool resp time

concurrent request

m
ill

is
ec

on
ds

1 2 3 4 5
20

30

40

50

60

70

80

90

100

110

120

Simple model 100 entries: SAX vs JDBC Pooling

xslstream.jsp Pool req/sec

concurrent request

re
qu

es
ts

/s
ec

on
d

1 2 3 4 5
xslstream.jsp 28.36 25.03 23.81 22.8 22.66
Pool req/sec 47.54 76.62 97.24 106.61 111.53

All the jdbc test used the second ethernet card and dedicated switch for database
communication. With one ethernet card, the throughput dropped to 50 requests per
second. Database intensive applications can increase throughput by adding a third
ethernet card and dedicated switch. Just for kicks, I compared the results of SAX
versus JDBC connection pooling. It's no surprise that connection pooling beats SAX by
a wide margin.

Graph 14: Simple Model 100 & 500: Sun vs. IBM VM

Using the simple model with 100 and 500 entries, IBM VM is about 25-29% faster than
Sun on Linux. Given that I'm using XML to benchmark the VM's, the difference in
performance is probably the result of garbage collection. The results Remy produced
for the book also show a similar deltas. I have no conclusive proof garbage collection is
better in the IBM VM, but that's my guess. For those who use obscure extra VM options
like tuning the eden, I ran a series of tests with different settings.

1 2 3 4 5
0
5

10
15
20
25
30
35
40
45
50
55
60
65
70
75
80

Simple model 100 & 500: Sun vs. IBM VM

Sun 100
Sun 500
Ibm 100
Ibm 500

concurrent Requests

R
eq

ue
st

s
pe

r S
ec

on
d

Sun 100 Sun 500 Ibm 100 Ibm 500
1 25 3.87 31.89 7.66
2 25.06 4.04 35.14 8.8
3 25.19 4.06 37.05 8.92
4 25.55 4.15 35.87 8.82
5 25.37 3.79 33.83 8.38

Graph 15: extended options for Sun VM

I used the cached.jsp page as base of comparison against simple_100.jsp for graph
15. The VM used for the test was Sun 1.4.1. In the case of XML, using parallel and
incremental GC actually decreases the throughput. Although tuning the survivor ratio
and new ratio can provide some improvement, the improvement versus time spent
tuning may not be worth it. Depending on your application, tuning the extended options
may show significant improvement. Application that are CPU and memory intensive
shouldn't bother with new ratio and survivor ratio. Exploring ways to improve the
application code or modify the architecture to cache data is more promising. Of course,
not all applications have that option, so use your own judgement.

0

5

10

15

20

25

30

35

40

45

50

55

60

65

1.86

16.54
18.5

24.15 24.72 25
27.41 28.09 29.16 29.24

30.36

63.92

VM option on Performance

Incremental gc (128-
512)

Parallel gc(128-512) No class gc(128-512) Min heap 70 new ratio
1(128-512)

Min heap 70 new ratio
5(128-512)

Server Min heap 70(128-512) Min heap 70 surv. Ra-
tio 35(128-512)

Heap -Xms128m
-Xmx512m

Min heap 70 surv. ratio
15(128-512)

Min heap 50(128-512) Server(128-384)
cached jsp

VM options

re
qu

es
ts

/s
ec

Graph 16: Gzip compression as Page Size Increases

Tim Funk thought it would be a good idea to compare the performance with and without
Gzip compression. At a previous job, I worked on a Gzip request filter, but Coyote now
supports Gzip thanks to Remy. Using Gzip compression on 50Kb pages produces a
20% improvement in throughput. That may not seem like much, but the observed
behavior from the browser is tremendous. For example, Verizon Superpages.com now
uses Gzip compression on most of their pages. The download speed over the internet
is now 2-3 times faster and the amount of bandwidth used is reduced by half or more.
Most of the page compress 6-10 times, depending on the page. The listings page
compresses 10 times, whereas the details page is reduced 6-8 times. For the
benchmark, I used Mozzila to compare the page size. With compression on, 50Kb went
down to .77Kb and 100Kb went down to .96Kb.

Myths about Performance and Scalability

First thing about performance is this. “Persistence, persistence, persistence!” Achieving
high performance is not a finish line. It takes a lot of hard work and constant monitoring
to maintain high performance. Contrary to what some companies claim, high
performance isn't easy and it's never as simple as point and click. As you might have
guessed by now, architecture is the primary predictor of performance. As an example, if
someone decides their entire architecture should use webservices, they must accept
that it will never match the response time and scalability of systems that use binary
protocols. There are several myths I want to address.

1. Bandwidth is unlimited
2. Any ISP will do
3. Scaling horizontally is preferable to vertical
4. You need the fastest webserver to get best the performance

50K 100K
0

10

20

30

40

50

60

70

80

90

100

110

120

94.79

51.73

116.44

59.24

Comparison of GZip as Page Size increases

Gzip off
Gzip on

Kilobytes HTML

R
eq

ue
st

s
pe

r s
ec

on
d

5. A website doesn't need much maintenance

Bandwidth is Unlimited

I've heard this from people on mailing lists, in person and on IM. It simply isn't true and
never will be true. What some people don't realize is that allocating more bandwidth
moves at human speed, not machine speed. Lets review WAN technologies and dispel
some myths about each one.

T1 – 128kbits to 1.5mbit

This definition used to be clear, but these days some sales people are calling DSL and
broadband as T1. A true T1 line is a copper trunk containing 24 telephone lines. Most
small and medium businesses with a T1 usually use the T1 for voice. Most businesses
with a T1 use DSL for data, since that is what providers recommend. T1 typically takes
a minimum of 3 months to install and takes a couple weeks to stabilize. Bottom line;
don't expect installation to happen in a week or a month. No matter what the sales
person tells you, it takes months to install.

T3 – 3mbit to 45mbit

T3 lines are also known as DS3. It is equivalent to 672 telephone lines or 28 T1 trunks.
The main difference between T1 and T3 is cost. T3 lines can cost up to $15,000.00 per
month. That's not a typo by the way. Normally, large corporations, or a high rise that
has 80 thousand square feet of office space use T3. Just to give you an idea, a 20
story high rise typically will have a T3 or a half dozen T1. Your typical 3-4 story office
building will probably have 2-3 T1 lines.

DSL – 128kbits to 10mbits

DSL stands for digital subscriber line. There are a lot of types of DSL: ADSL, SDSL,
and VDSL. Unlike T1, DSL uses one telephone line, and has a lot of limitations. Most
ISP todays offer Asynchronous DSL. It's called that because the download speed from
the Internet is faster than the upload speed. Most business users fit this category.
ADSL is not really meant for hosting websites. Symmetric DSL has the same download
and upload speed. In many ways, this is very similar to T1, but it also suffers from the
same limitations of ADSL. Both ADSL and SDSL have a limit of 3 cable miles. There
has been a lot of talk about VDSL, a faster version of DSL, but I don't know anyone
offering it. In theory, VDSL can reach speeds up to 10mbit. Unless you're within 1 cable
mile, the typical bandwidth is 384-768kbits. Within the first cable mile, you can get as
high as 2mbit bandwidth with ADSL/SDSL.

Frame Relay – 56kbits to 1.5mbits

Frame relays use shared lines and are similar to T1. Frame relay uses a different
protocol than T1 and has the ability to provide bandwidth on demand. But there is a
catch. Since the lines are shared by multiple customers, getting bandwidth on demand
rarely works as advertised. Unless the line between you and the phone company is

dedicated, don't expect your bandwidth to double. Most likely the ISP has sold more
than half the physical bandwidth on the shared line, so at best you will only see a slight
improvement. Some ISP will use frame relays if they have T1 lines going to their
offices. This way they can allocate the bandwidth of their existing T1 appropriately.

OC1 – up to 51mbits

OC1 uses fiber optics instead of copper trunk lines. It is roughly equal to a T3 and the
prices range from $10,000-20,000 per month. Unless you're an ISP, major corporation,
or phone company, the cost is prohibitive.

OC3 – up to 155mbits

OC3 also uses fiber optics and is similar to OC1. Unless your pocket is deep, don't
expect ISP's to give you a quote. Getting an OC3 line will require a team of hardhats
and takes months to install. To my knowledge, only backbone providers have access to
OC3 lines. Even if the office building is next to an existing OC3 line, don't expect the
phone company to open the faucet for you.

For those unfamiliar with megabits and what it means, let's convert it to kilobytes per
second. 1 byte is equal to 8 bits. If we take that equation and do a simple calculation,
we get the following:

T1 – 187.5 kilobytes per second max
T3 – 5.25 megabytes per second max
VDSL – 1.25 megabytes per second max
SDSL – 187.5 kilobytes per second max
Frame Relay – 187.5 kilobytes per second max
OC1 – 6.375 megabytes per second max
OC3 – 19.375 megabytes per second max

In reality, you won't get the maximum. Because of Internet congestion, packet collision,
bad phone lines, and distance from the provider, the ideal throughput on a cable
modem, and DSL is probably closer to 80-90% of the maximum. Now, lets do some
simple math to see how a T1 translates to page views per second. Let's use the
buy.com homepage as an example. For now, I will assume the images are cached in
the browser to calculate the maximum requests per second a T1 can support.
Pageview is the industry standard for measuring site traffic, so I will use that, since
requests per second is not very useful.

187.5 Kbsec / 56 Kb per page = 3.35 pageviews per second

What do you mean 3.35 pageviews per second? That's actually an optimistic estimate.
In reality, a percentage of the requests will need new images. For example, if I search
for a product on buy.com, the browser will have to download the thumbnails. Therefore,
the total kilobytes sent for those types of requests could be 2-3 times (100-150Kb). It's
easy to see how page size affects the number of requests per second the bandwidth
can handle. Chances are the bandwidth will die long before Tomcat does.

Any ISP Will Do

Now that we've covered the types of connection available, lets see how it applies to
ISPs. Service providers belong to one of three tiers.

Tier 1: Backbone Provider

Backbone providers are large telecommunications companies who own their own lines
and networks. The major players today in this area are AT&T, Verizon, Level3, MCI-
Worldcom and SBC. Even backbone providers don't have unlimited bandwidth. You
can expect multiple OC12 lines for backbone providers.

Tier 2: Regional

Regional providers include tier 1 providers. With the current economy, many tier 2
providers have gone out of business. Tier 2 providers typically buy bandwidth from
backbone providers and build out a second line for redundancy. The quality and size of
their network varies from region to region. Typical tier 2 provider will have 50-100mbits
of total bandwidth include backup lines per hosting facility.

Tier 3: Local

Local providers typically rent one or more T1. They're the mom and pop providers.
Normally, tier 3 can't afford their own line, so they will buy bandwidth from one or two
tier 2 providers. Some do buy bandwidth from tier 1, but that is the exception. Total
bandwidth for tier 3 ranges from 10-50mbits.

Why should I care about the provider? Let's say the functional and performance
requirements state the website has to support 100 pageviews per second and the
average size of a page is 45 kilobytes. That would mean the actual bandwidth has to
be 4.5 megabytes per second. Depending on providers in your area, a tier 2 provider
may only have a single T3 connection. Chances are the provider has other customers
using the bandwidth, which means they won't be able to support the requirements.
Let's put that in perspective, before we move on.

100 pageviews/sec X 86400 sec/day = 8,640,000 pageviews/day

How many sites get 8 million pageviews a day? According to an old report on
internet.com, USAToday.com had 2.4 billion pageviews for 2000 with an average of 9
million per day and a peak of 15.8 million the day after nation elections. Based on
Verizon's own published statistics, Superpages.com gets 63 million searches a month.
If I convert that to pageviews, it comes to 2.1 million per day. That is assuming each
search only views one page. Based on my own experience, I tend to view 3-5 pages
per search, so Superpages.com probably gets closer to 10 million per day. On the
extreme end, yahoo gets 1.5 billion pageviews a day. The links for the articles are
below.

Http://dc.internet.com/news/article.php/560421
http://www.directorystore.com/aboutus/about_verizon.jsp

http://public.yahoo.com/~radwin/talks/yahoo-phpcon2002.htm
http://www.theopenenterprise.com/story/TOE20021031S0001

Since the yahoo presentation at PHPCon listed the hardware, I'll use that to estimate
the hosting requirements. Yahoo uses 4,500 server to serve up 1.5 billion pageviews
each day. If we divide that by the number of seconds in a day, we get 17,361
pageviews per second. Assuming the load is distributed evenly across the servers,
each server handles 3-4 pageviews per second per system. The presentation says the
servers are distributed across 16 facilities, which means each site should have
approximately 280 servers. The question you have to ask now is, “how many providers
can handle that many servers?” The answer to that is tier 1 providers. Let's take the
best case scenario and say the systems are all 1U rackmount servers in a 48U rack.
That means 6 full racks in the best case. In reality, some of the systems will be multi-
CPU systems running a database, which means a 4U or 6U rackmount. I don't know
the actual number of racks each facility has, but the minimum is 6 racks. How much
does that cost? The last time I got a quote for 4 racks with Level3 was 5,000.00 per
month. Even if the sales person says “You can burst on demand,” it does'nt mean you
will magically jump from 10 megabits to full 100 megabits of bandwidth. This leads into
the next myth.

Scaling Horizontally Is Preferable To Vertical

In an ideal world, this is true, but we don't live in wonderland. When a company builds a
website there are typically 3 options they can choose from.

1. Host it locally
2. Co-locate the servers
3. Rent servers from a provider

Most business don't set aside huge rooms for the servers; therefore adding 20 new
servers isn't something that happens magically. If anything, it will require a lot of
planning to make sure the site can scale horizontally. The biggest challenge of hosting
it locally is the bandwidth will max out. Adding more bandwidth typically takes 3-5
months. Other hidden problems with hosting locally are zoning laws. Depending on the
zone, installing a T3 or additional T1 lines may require lengthy paperwork and
ultimately may not be possible. This isn't to say scaling horizontally won't work, it just
takes a lot more work and patience than most people expect. For example, say I build a
website using XML and webservices. I start with a dozen servers to distribute the load.
As the traffic increases, I can add servers as long as there's room for it. At some point, I
need a bigger generator, bigger room, more racks, and more routers. If on the other
hand I get a XML accelerator, it may scale better in the long run. Based on the
benchmark results for the Linux system, I can calculate the number of servers:

Concurrent requests / 20 = number of systems

For this estimate, I used 20 per system assuming the messages average 10 kilobytes
and CPU usage average 60% during normal load. Each system still has to get data
from the database and handle other processes, so I don't want XML to hog all the
resources. Let's say my website provides an Online accounting system for small
businesses. If I want to support 400 concurrent active users, I would need 20-25

servers. On the other hand, if I use an hardware solution like Sarvega's XPE, I would
be able to handle the same amount of traffic with half the number of servers. Why is
this more scalable? Say each server has a 400 Watt power supply and you want to
make sure there's backup power for 8-10 hours. If I have 12 servers, I can get by with
off the shelf UPS. With 25 servers, I should use a gas generator and rewire fuse box to
use it. I can't just put the generator in the server room, since it generates noxious
fumes and the fuse box may be some place else. If the office does not have a place for
the gas generator, the only option is batter UPS. UPS systems with 10 outlets range
from 500 to 1000 dollars. Once you add up the cost of the servers, UPS, and routers,
the total is to 30-35,000. Doubling the capacity in theory is simple as adding 25 servers.
Using an accelerator has a higher initial cost, but as the traffic grows to 800 and 1200
concurrent users, it may cheaper and is more manageable. In an architecture with a
dedicated XML tier, the webservers would not manipulate XML. This means each
webserver should be able to handle 3-4 times more load. Reducing the number of
servers also makes it easier for the system administrators to manage. A critical part of
managing the servers is making sure each release is published successfully and no
unexpected bugs appear. That means the system administrator should update a server
and run a quick test. If it takes 10 minutes to update each server, 25-50 server could
take a system administrator 3-5 hours to update.

Co-locating the servers is typically the preferred choice for most companies. The
benefits of co-location is the provider has redundant power, fire suppression system,
extra rack space and multiple connections for redundancy. There's a huge catch with
co-location and scaling horizontally. The ISP may not have enough room. The goal of a
provider is to fill up all the racks with paying customers. An empty rack isn't making
money, so unless you've purchased extra rack space for growth, chances are you can't
drive up and add a couple servers. From first hand experience, it typically requires
several months to change providers, or move the systems to a new set of racks. In
worst case scenarios, the local providers will be completely full. In those situations, it
means shipping the server to another city, and sending the administrators to install and
configure the servers. For 25 servers, it should take two experienced system
administrators a couple of days if nothing goes wrong. This is one of the hidden costs,
which people don't expect.

Renting servers from a provider is the least flexible option and is typically tied to a set
of configurations they support. Trying to scale in this configuration is a lost cause, so I
don't recommend it at all. If performance is important to you, skip this configuration all
together.

You Need The Fastest Web Server To Get The Best Performance

Most people know to ignore hype when it comes to movies or music, but for some
reason, the same common sense is missing from the IT world. That's not really true, but
if you look at the debates about .NET vs. Java, it would indicate common sense is
missing. Another possible explanation is idiots scream louder on mailing lists and
forums than experienced developers. The sales people making grand statements don't
believe it, so neither should you.

By now, it should be painfully obvious the architecture is the most important part of high

performance. Without that, the webserver means very little. If the application you're
building is heavy on the database side, you're better off exploring the database options
first. The key is to focus on the functional requirements and figuring out which ones are
unrealistic and which are reasonable. The webserver should be a supporting character
in a play.

A Website Doesn't Need Much Maintenance

If you expect the business to grow and the traffic to increase, it is important to measure
the traffic and keep an eye on it. In a well managed business, new hardware and rack
space would be ordered when the average load reaches 75% of the maximum. Given
the time needed to get new hardware, configure each system, ship it to the provider,
install and setup the takes 3-4 months, waiting until a problem appears is asking for
trouble. Maintenance also includes the mundane things like generating statistics from
the server logs, archiving logs, backing up the database and sending out an alert if a
process fails. During the day, maintenance includes monitoring the critical systems. I'll
go into greater detail about how to monitor the systems later in the article.

Development Process Is The Problem Not The Server

From first hand experience, performance problems are the result of bad development
process and poor communication. Having worked at several startup companies, the
biggest challenge to a well organized development process is clear functional and
performance requirements. One would think functional requirements would be the top
priority, but often that is the hardest part to nail down. Regardless of the type of
development process, none of them will work without clear functional requirements. In
fact, I argue any development process will work when the requirements are well
documented and understood by the developers.

How do I write functional requirements? The first step is listening to the business guys
and figuring out exactly what they want. I've seen engineers ignore business guys and
others who totally rollover like a puppy. The approach I take is assume all my
assumptions are wrong and ask specific questions. Often the responses won't answer
the question completely, so I will rephrase the question until I get the information I want.
This process may feel like drawing blood, but it's a necessary part of the process if you
really want to succeed. I try to follow a couple simple rules:

1. Don't assume everyone thinks the same
2. Everyone answers the same questions with different responses and

each person interprets the question a different way
3. Forget everything you know and think you know about the requirements

when you start writing the functional specifications
4. No detail is insignificant
5. Paraphrase other people's response before analyzing it
6. On purpose, state an incorrect assumption and hope someone catches it

Number six was Tim's idea. I thought it was good, and added it. I can't stress listening

and asking enough. Most projects are under tight deadlines to produce a marketable
product, so the best way to manage the process is to get everyone on the same page.
Telling others what to do rarely works. Getting everyone to focus on solving the
problem does work and works consistently. That's the role of documentation and
requirements.

How do I write performance requirements? The functional requirements should to be
done before you write performance requirements. Assuming the functional
requirements are known in sufficient detail, the next step is to build a simple prototype
to test the performance under ideal and worst case scenarios. Let's use the online
accounting site as an example. Build two small prototypes with and without XML. Use
Jmeter to load test each one with an increasing number of concurrent requests. Once
you have the results, create graphs showing the relationship between concurrent
requests and CPU/Memory usage. Also, generate a graph showing the response time
over concurrent requests. The graph will look similar to the XML benchmarks.

Once you get some good data and charts, write up a short summary and presentation.
It's not programming, but if you want management on your side, you have to bite the
bullet. Most likely, you'll have to repeat this process dozens of times before everyone
agrees on a common set of performance requirements. Sometimes certain
requirements are driven by external forces, so getting real numbers will help the
management make a case. Your boss can't just ay “XML sucks,” to his superior. Having
a solid presentation with graphs of the throughput with and without XML will make a
compelling argument.

Once you have the functional and performance requirements document, the next step
is to schedule spot benchmarks at keys points. Each milestone should have a thorough
set of benchmarks. Depending on the importance of a component, more benchmarks
may be needed. For example, a database manager should be benchmarked with
extreme loads to insure it creates connections efficiently and closes connections
correctly. A bug in the database manager will have a serious impact on performance.
The key to high performance is persistent attention to detail. It's better to run a quick
benchmark, than say “Oh, it should be within the requirements.” Unless you test the
code thoroughly, you don't know for sure.

Performance Strategies

There are a couple of things you can do to maintain high performance once you've built
the application.

1. Monitor the servers
2. Log application performance
3. Generate nightly statistics
4. Document the performance boundaries
5. Make sure everyone involved in the decision making process reads the

document
6. Send out regular summaries of the server load and performance
7. Write a formal plan for disaster recovery
8. Run through the disaster recovery plan so everyone knows what their

tasks are
9. Assign administrators and developers as point man for key

responsibilities
10.Have a staging environment to test new releases

Monitor the Servers

What should I monitor? Monitoring can be categorized as active and passive. There are
different definitions of active and passive monitoring. Here is how I define it.

Active monitoring is an external process, which actively uses an
application to measure its performance and status. Active monitoring can be thought of
as taking the application heartbeat. It is like a doctor taking a patients heartbeat.

Passive monitoring is a process, which uses existing information to
measure the performance and health of an application. It is different from active
monitoring in that it does not place additional load on the application. An application
may actively send out results or log them to a file, but it is not the responsibility of a
passive monitor to trigger that process.

Passive monitoring can take several forms. Some popular types of passive monitoring
include:

1. Reading access log files for last request
2. Have the application send out a status
3. Listen to existing application heartbeats in clustered environments

In theory, the benefit of active versus passive monitoring is active will detect a problem
sooner. Passive monitors typically aren't used as real-time status; therefore when the
application dies, so does the monitoring. One common approach is to have the
application implement passive monitoring. In the case of web servers, the access log is
a passive monitor. A second active monitor then reads the logs generated by the
application. The down fall of this approach is figuring out the difference between light
traffic and a real problem.

For example, say I write a request filter to log the performance. If my site gets an
average of one request per minute, the active monitor has to use an interval greater
than one minute. How do you determine the right interval? That's a hard question to
answer, because you have to know the traffic pattern to figure what interval constitutes
a warning threshold. If the longest period between requests is 10 minutes, then a
reasonable interval might be 15 minutes. Obviously, that means a server could be
down for 15 minutes befor an alert is sent out. A better form of passive monitors is a
heartbeat. For example, clusters tend to implement a heartbeat to measure the load of
each system. The load factor is then used to route the request to the proper machine.
A passive monitor in this configuration can listen to the heartbeats without impacting
performance and provide close to real-time status.

Resonate is a commerical load balancing product, which includes monitoring and alert
features. In their design, a daemon on each system measure the CPU and memory
usage and sends a heartbeat. The heartbeat is then used by a master to route
requests. In the event the master dies, a second system is configured to take over as

the master and send out an alert.

Active monitoring should be implemented carefully and place minimal load on the
system. Aggressive active monitoring can create more problems than it solves, so use it
carefully. Generally, passive monitoring is more desirable for application and system
status.

Log Application Performance

Let's say your application makes a lot of sql queries. It's a good idea to log the elapsed
time to execute all the queries and elapsed time to generate the page. Logging the
response time of each query is too much and will impact the total response time. Here
are some guidelines:

• low level processes should not be logged.
• Processes that communicate to an external system should be logged. This includes

RMI, JDBC, HTTP and all calls over the network.
• The total process time should be logged
• Only log critical pages and servlets
• The logging should be configurable
• If the logging mechanism fails, it should not break the application

Some common techniques for implementing logging with JSP is to use request filters or
create a base servlet. In the past, I've used both techniques. Before request filters were
part of the servlet specification, the primary way to log performance was to write a base
servlet that implements logging and have all servlets and pages extend that class.

Now that request filters are standard, you can easily write a filter that gets a time stamp
at the start and end of the request. This approach is flexible and generic. Once the filter
is written and tested, I can configure it with web.xml.

 <filter-mapping>
 <filter-name>myPerfFilter</filter-name>
 <url-pattern>/search/</url-pattern>
 </filter-mapping>

 <filter-mapping>
 <filter-name>myPerfFilter</filter-name>
 <url-pattern>/checkout/</url-pattern>
 </filter-mapping>

In this example, only files in search and checkout path are logged. All other pages are
not logged, because they are not critical. An easy way to save the performance
measurements is to write a custom FileLogger and configure Tomcat to use it.

 <Valve className="peter.performance.AccessLogValve"
 directory="logs" prefix="localhost_access_log." suffix=".txt"
 pattern="common" resolveHosts="false"/>
This way, I take advantage of existing Tomcat functionality without having to write a

whole new logging component.

Generate Nightly Statistics

Now that you're logging and monitoring the systems, reports should be generated
nightly or at minimum weekly. This will tell you how traffic affects your systems and a
pattern will emerge over time. One way to visualize the overall performance of the site
is to graph the response time versus the system load. There are numerous free
packages for analyzing access logs. A new trend is to store the access logs in a
database and use OLAP tools to slice and dice the data to mine for information. This
topic probably could be a book, but I”m not writing it today.

Document Performance Boundaries

This isn't the performance requirements document. It is a short document describing
how much traffic the setup can support and when new hardware is needed. It can use
information from the performance requirements document, but the goal is different. The
site performance is a combination of the hardware, software, hosting facility and staff.
Depending on your environment, adding hardware may only take a couple weeks.

Make Sure Everyone Reads The Documents

The documents are not meant to kill trees. Many programmers hate to read documents
and find it a waste of time. Everyone in this case isn't the secretary. It is everyone who
is directly responsible for the site and responsible for approving hardware purchases.
The CTO, CEO, project manager, programmers, system administrators and network
administrators should all read the documents.

Write A Formal Plan For Disaster Recovery

Disasters will happen. It's Murphy's law. The most common failures are hardware
related. Things like harddrives and memory will go bad, so have a plan of attack. Be
very specific with the instructions. It's not desirable to put RAID on all the webservers,
so when one goes bad, the person responsible should have the instructions at their
fingertips. Simple things like, access to the hosting facility, where the rack is, where the
key is and other access information are important. The last thing a system administrator
wants is to search for some piece of documentation at 3 a.m, or struggle to get into the
hosting facility.

Run Practice Drills

Fire fighters practice drills so they stay sharp. The same is true for the IT staff. If no one
reads the disaster recovery document or tries the procedure, there's no assurance the
plan will work. For example, say a new build has a serious bug that crashes the whole

system. If the disaster recovery plan is to rollback to the previous release, the system
administrators should run through the rollback process at least once.

Assign People

It's a good idea to assign individuals as experts in specific areas. There should be
alteast one developer assigned as the point man in case the system administrators
need help diagnosing a problem. In small shops with only 2-3 people, everyone should
know enough to jump in in a case of an emergency. In large projects with lots of staff,
it's a good idea to have a backup person. That way people can go on vacation without
worrying about getting called back.

Staging Environment

In today's economy, building a staging environment may be a tough sell, but it's very
important. If your website has to meet Service Level Agreements (SLA), it's good to
create a scaled down version of the production environment and run the release
through regression and stress testing. Try to get the staging environment as close to
production as possible. In the case of Tomcat, this means the same VM, OS,
configuration and monitoring. Eventually, a problem will appear and everyone will have
to drop everything to fix it. If there's a well defined deployment and release plan,
tracking down the problem will be easier.

Conclusion

High performance is often misunderstood and a touchy subject. Although this article is
short and skips a lot of details, hopefully it provides some useful information. I'm hoping
Apress will do something with the book, or let Remy and I shop the book to other
publishers. If not, I would like to cover some of the more mundane sections like writing
functional and performance requirements in greater detail when I have more time.
Remy and I wrote three chapters each, so a lot of details are left out. High performance
isn't magic. If you want it bad enough and stay focused, the journey is memorable. It
might be full of lions and tigers and bears, but there is a yellow brick road. Don't forget
to bring some doggie biscuits for Toto and some Doctor Pepper for yourself.

	Author
	Table of Contents
	So You Want High Performance
	What to Expect
	An Address book Webapp
	Installing the War file
	Features

	How it performs and tuning
	Systems
	System 1
	System 2
	System 3
	System 4
	System 5

	Enough Jibber Jabber Already, Show me the Data
	Graph 1:Simple 100 client vs.servers
	Graph 2:Simple 100 DOM vs.SAX
	Graph 3:Simple and medium model with 100 and 500 entries
	Graph 4:Data models with 100 and 500 entries with “-server -Xms128 -Xmx384 ”
	Graph 5:Simple model 100 entri s 400mhz UltraSparc vs.AMD XP 2Ghz
	Graph 6:Simple Model 100 ntries:xmlservlet vs.xslstream.jsp on Linux
	Graph 7:Simple model 100 entri s:cached vs.non cached on X1
	Graph 8:Simple model 100 entri s:CPU sp ed vs.Sarv ga XPE
	Graph 9:Medium model 100 entries:CPU vs.Sarvega
	Graph 10:Simple model:XML vs.JDBC r q/sec
	Graph 11:Simple model:pool vs.non pooling req/sec
	Graph 12:Simple model:pool vs.non pooling response time
	Graph 13:Simple model 100 entries:SAX vs.JDBC Pooling
	Graph 14:Simple Model 100 &500:Sun vs.IBM VM
	Graph 15:Extended options for Sun VM
	Graph 16:Gzip compression as Pag Size Increases

	Myths about Performance and Scalability
	Bandwidth is Unlimited
	T1 – 128kbits to 1.5mbit
	T3 –3mbit to 45mbit
	DSL –128kbits to 10mbits
	Fram Relay –56kbits to 1.5mbits
	OC1 –up to 51mbits
	OC3 –up to 155mbits

	Any ISP Will Do
	Tier 1:Backbone Provider
	Tier 2:Regional
	Tier 3:Local

	Scaling Horizontally Is Preferable To Vertical
	You Need The Fastest Web Server To Get The Best Performance
	A Website Doesn't Need Much Maintenance
	Development Process Is The Problem Not The Server

	Performance Strategies
	Monitor the Servers
	Log Application Performance
	Generate Nightly Statistics
	Document Performance Boundaries
	Make Sure Everyone Reads The Documents
	Write A Formal Plan For Disaster Recovery
	Run Practice Drills
	Assign People
	Staging Environment

	Conclusion

